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Abstract:  

The solution for large deflections of beams that has not been solved in general in 260 years is 

now presented in this paper for point loads and moments in any directions along the beam with 

various end conditions. Also, the solution can be used for non-prismatic beams with various end 

conditions and numerical solution is presented to obtain exact solutions. Curvilinear beams and 

extensibility along the beam are also addressed. 

Introduction: 

The large deflection of beams has been investigated by Bisshopp and Drucker [1] for a point 

load on a cantilever beam. Timoshenko and Gere [2] developed the solution for axial load. 

Virginia Rohde [3] developed the solution for uniform load on cantilever beam. John H. Law [4] 

solved it for a point load at the tip of the beam and a uniform load combined. In this paper the 

general solution developed for a prismatic beam and in some cases for non-prismatic. However, 

numerical integration maybe needed along with solving compatibilities equations for the 

constants of integrations. A more general and preferable numerical solutions for a non-prismatic 

beam is also given using only many point loads acting with an angle on the beam with a moment 

on the node representing the approximate load. This point load can take any direction on the 
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beam bending in the x-x direction or y-y direction of the moment of inertia. Thus the load is to be 

resolved to x-x direction and y-y direction of the moment of inertia in each orthogonal deflection 

given two non-linear differential equations. By solving each non-linear differential equation the 

orthogonal deflection components can be obtained.  

 

An approximation attempt has been investigated by Scott and Caver [5] for all problems in 

which the moment can be expressed as a function of the independent variable. However, the 

solution presented here is not an approximation and is of a closed form. As a consequence one 

can take a load function and divide it into line segments for a non-prismatic beam with no axial 

loads and by using the proposed solution the large deflection can be calculated with reasonable 

accuracy. Thus, by taking smaller and smaller increments the accuracy is improved. 

 

The solution is based on solving the non-linear differential equation of Bernoulli-Euler beam 

theory; 
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Where M(x) is the moment in the direction that corresponds to the moment of inertia I(x), E is 

the modulus of elasticity, y is one of the orthogonal deflection say for Ix-x. Thus, if the other 

deflection is desired, then another equation is needed where M(x) is the moment in the direction 

that corresponds to the moment of inertia Iy-y(x). It is assumed the modulus of elasticity is 

constant and the bending does not alter the length of the beam. Three different closed form 

solutions are investigated for three different cases of the non-linear differential equation. In many 

ways M(x) is not known until the final deflection is known so will assume M(x) is known in the 

equations. 
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Case I: 

In this case assume )(
)(
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Where is a new variable, then substitute inq. 2 yields, 
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Where, C1 and C2 are constants of integration. This off course the solution Scott and Carver 

approximated as an infinite series not realizing it can be expressed in a closed form. Note: Eq. 4 

gives an integral solution where if the moment is approximated by a curve it can give a better 

approximation than small deflection equations approximations. It is seen that if the denominator 

of Eq. 4 is approximated as a unity it would give the standard solution for small deflection 

approximations. In the case of large deflection it is better to use point loads and moments for 

approximating the general loading because it will be shown that it can be presented as elliptical 
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integrals of the first and second kind. Elliptical solutions enable us to have a closed form solution 

as it has been successfully done through recursion [7, 8] instead of integration.   

 

Case II: 

In this case assume )(
)(
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yM
 , a function of y only.  This happens in buckling problems 

and the moment of inertia is considered constant. Thus, 
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By following case I analysis with interchanging x by y the solution becomes: 
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Case III: 
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In this case assume )(
),(
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 , a function of x and y.  This happens in combine 

bending and buckling problems with point loads and the moment of inertia is considered 

constant. Thus, 
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Consider the rotation of axis and let: 
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Where is a new variable, then substitute inq. 14 yields; 
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Thus, after integrating with respect to u, substitute x and y from Eq. 10 and an explicit equation 

of deflection in x and y is obtained. Another way of calculating x and y is pick u find v from Eq. 

18 then find x and y from Eq. 11. 

 

Hence, the solution for the nonlinear differential equation has been obtained for three cases and 

applications will follow. 

 

Application for Case I - Numerical Solution for Any Load Function Non-Prismatic Beam: 

This example is to demonstrate the solution for a cantilever beam. Other boundary conditions for 

beams are similar. First divide the beam into segmental beams of each length Li and on each 

node of the segment insert the equivalent load Pi and moment Qi  to approximate the real load, 

see FIG.1. The moment on the segment beam at xi is: 
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Where, all xi are unknown.  

 

 

FIG.1 – Cantilever Beam Analysis – Non-Prismatic Beam 
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Point Loads are in the y direction 

Now the moment of inertia: 
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Where, the moment of inertia is approximated at each beam segment to be constant2 and the 

moment of inertia function is assumed continuous. Thus: 
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Substitute Eq. 21 in Eq. 3 and find the slope on the segmental beam i yield: 
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Apply compatibilities yield: 
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At x = L, where L is the length of the beam at x = xn = L,  

0)()(  Lyxy nnn    ……………………………………………………………....…………. (24) 

Where n is the number of beam segments and n+1 is the total numbers of beam segments; apply 

Eq. 24 in Eq. 22 yields: 

                                                 
2 Note: this approximation does not mean there are stress singularities due to sharp corners at the discontinuities 
where each segment meets. All it means is the actual deflection of that segment can be approximated with the 
deflection of a beam with constant moment of inertia. 
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When applying Eq. 23 for all i yield:  
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assuming ii II 1  at the joints (See Appendix B). Now impose the length of the beam segment 

to be un-extendible, yields, 
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Eq. 27 does not lend itself to a simple solution (see appendix D for setting up Elliptic functions) 

and numerically complex. To simplify the equation assume the increments are small enough such 

that the slope throughout the interval of xi ≤ x ≤ xi+1  is the same (see Appendix A for the general 

solution), so: 
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Substitute x1 – x0 from Eq. 31 in Eq. 32, for a given C1 and x2 – x1 is found.  
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Substitute x1 – x0 from Eq. 31 and x2 – x1 from Eq. 32 in Eq. 33, for a given C1 and x3 – x2 is 

found, where x2 – x0 = (x2 – x1) + (x1 – x0).  
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To find C2i assume compatibility and enforce: 
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And the solution is found numerically.  

 

Application for Case II - Numerical Solution for Any Load Function Non-Prismatic Beam: 

This solution is very similar to the application of Case I or the previous application but instead of 

using x and xi substitute for y and yi and can find C1, y0 , y1 , …… , yn-1 and C2i  for the 

deflection of Eq. 8 see FIG.2. 
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FIG.2 – Cantilever Beam Analysis – Non-Prismatic Beam 

Point Loads are in the x direction 

 

Application for Case III - Numerical Solution for Any Load Function Non-Prismatic Beam: 

Again implement the solution using similar procedures as in the application of Case I, see FIG.3. 

If assume at xi the resultant moment in the x and y direction is Mxi and Myi and if assume at xi the 

resultant force in the x and y direction is Rxi and Ryi , then the moment for Eq. 9 becomes: 
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  ………………………….…………. (34.1) 

Thus, if translating temporarily the axis to a local axis with ii yx  and  Eq. 9 becomes: 
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   i
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y
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
 and        where, )(

)(1
3

2


   …………. (34.2) 

Note: for segment i-1 and segment i at x = xi  the resultants are the same so 

11     and      iiii bbaa       ………………………………………………………….……. (34.3) 

Thus if impose  

ii

xxxyxy iiiii

 Bm. Seg.            to1  Bm. Seg.

 at                 )()(             1


 

 

Which means from Eq. 13 and 34.3 yields: 

iiiii uuuvuv   at                 )()(             1    ……………………..…………………………. (35) 

This implies 11111 1210 CCCCC n   , assuming ii II 1  at the joints (Se Appendix 

B). u0 , u1 , ……. , un can be found by using the approximation:  

)()(or           )()( 11   iiiiiiii uvuvxyxy     ……..……………………......………………….. (36) 

Thus, 
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Or 
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……..…………………..………….. (38) 
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Which is again for a given C1 ui‘s  can be found from Eq. 38. When using Eq.10: 
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Now, find C2n-1  from the last segment to satisfy  

L
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and find all of C2i from the compatibility equation of deflection yi and using Eq. 11: 

.....etc

2    find and              )()(

2    find and              )()(

3212222

211111








nnnnnnn

nnnnnnn

Cuvuuvu

Cuvuuvu

 

When done find all of v0 , v1 , ……… , vn-1 then substitute in Eq. 11 to find xi and yi . 
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FIG.3 – Cantilever Beam Analysis – Non-Prismatic Beam 

Point Loads are in any direction 

 

Application Examples of Case III Numerical Solution: 

(a) Fishing Pole: an application for Case III is shown on FIG. 4, where the beam has an angle 

α with the horizontal and a load P0 and P1 hanging from the beam. One common 

application is a fishing pole that has a fish that has the load P0 from the vertical and P1 = 

0. In this case when varying the angle α with the horizontal the moment changes and the 

deflection curve change giving a smaller or bigger moment with various elastic curves. 

This affects the ability to pull the fishing with the real and having various controls on 

catching the fish by puling or letting go the line. An experienced fisherman does this 
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procedure naturally and gets the credit for not loosing the fish. A good fishing rod would 

be designed to have a moderate elastic curve configuration when varying P0 and the angle 

α. The equations for a non prismatic fishing pole can be: 

     :becomes Eq.9in   function   theThus     sin     and      cos 11 iyx hPPPP    

 

 
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sin     and    cos       

        

       

        

where,
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 In this situation each beam segment can be translated in a new local axis by ii yx  and to 

have Eq. 10 ready for rotation of axis to satisfy Eq. 9 and then translate to the global axis. 

For example translate the local axis by ii yx  and , and substitute in Eq. 17 and 18 the new 

coordinates )(  and  )( ii vvuu  for u and v in the solution of Eq. 17 and Eq. 18, where 

ii vu   and  are obtained from substituting ii yx  and  in equation 10 with the replacement of 

ii bbaa by    and  by  . 

(b) Curved Beam: Another application example where the beam is a non-prismatic curved 

beam. Thus, if subdivide the curved beam to a smaller segments cantilever straight 
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beams3 with constant moment of inertia as in using FIG. 3. If αi is the angle the 

segmental beams make with the horizontal, then the problem can be solved by taking 

each deflection curve derived from the local axis of the segmental beam and rotated by 

the angle αi then translate by ii yx  and to the global axis and the problem can be solved 

numerically. 

 

 

FIG.4 – Fishing Pole Example (a) 

                                                 
3 Note: this approximation does not mean there are stress singularities due to sharp corners at the discontinuities 
where each segment meets. All it means is the actual deflection of the slightly curved segment can be approximated 
with the deflection of a beam with straight segment with a constant moment of inertia. 
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(c) Bow and Arrow: The ancient structural problem in archeries or shooting bow and arrow 

can finally be solved. Amazingly, can design a curved non-prismatic beam to give the 

proper deflection curve for a human precise measurement giving the best comfortable 

result for a more accurate bull’s-eye. Possibly, a unique design for each athlete, so 

putting tension by changing the string size can be less desirable. To simplify the 

equations and show the example, a non-prismatic curved beam will not be used but use a 

non-prismatic straight beam, see FIG. 5. The function hi in Eq. 9 becomes:  

 

 

FIG.5 – Bow and Arrow Example (c) 
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 In this situation each beam segment can be translated by 00 y and x  in its local axis to  

satisfy Eq. 9 and then to the global axis. For example translate by x0 and y0, and substitute 

in Eq. 17 and 18 by the new coordinates (u-ui) and (v-vi) for u and v of Eq. 17 and Eq. 18, 

where ii vu   and  are obtained from substituting 00 y and x  in equation 10 with the 

replacement of ii bbaa by    and  by  . 

Column with Load through Fixed Point: The problem of column with load through fixed 

point was presented by Timoshenko and Gere [2]. Jong-Dar Yau [6] presented a solution 

for Closed-Form Solution of Large Deflection for a Guyed Cantilever Column Pulled by 

an Inclination Cable. A more general problem is to allow the fixed point D to have a 

coordinate point (xd, yd) instead of the coordinate point (xd, 0) as in FIG. 6. As if the tip of 

the column is attached by a cable with a shackle to point D and the shackle is being 

tightened. The column is assumed a non-prismatic. This situation can also happen in a 

vertical fishing pole, where the fish pulls with an angle β. Thus, moment becomes: 
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FIG.6 - Column with Load through Fixed Point (d) 
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satisfy Eq. 9 and then to the global axis. For example translate by x0 and y0, and substitute 

in Eq. 17 and 18 by the new coordinates (u-ui) and (v-vi) for u and v of Eq. 17 and Eq. 18, 
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where ii vu   and  are obtained from substituting 00 y and x  in equation 10 with the 

replacement of ii bbaa by    and  by  . 

The ± sign in Eq. 3, 7 and 17: 

The ± sign in the solution of Eq. 3, 7 and 17 can be used interchangeably when the slope of the 

deflection curve goes to infinity at a point and the slope change sign. Another word the 

deflection curve is not a function anymore and becomes circular. In Eq. 17 v when 

bay / . At that point the correct sign of Eq. 17 must be used. 

 

Other End Condition:  See Appendix E 

 

Curvilinear Beams: 

For a curvilinear beam with a function y = R(x) the new radius of curvature must satisfy the 

following equation: 

old
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
      …………………………………………………………………. (41) 

So that if M(x) = 0 the radius of curvature does not change and remain of the function y = R(x). 

Thus Eq. 1 becomes: 
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And solution is as Eq. 3 and Eq. 4 by replacing f(x) by t(x). 
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Extensibility: 

In order to account for extensibility of the beam will analyze a beam segment Li. Let αi be the 

directional angle of the load Pi and θi the angle at Pi representing the slope of the beam at that 

point as in Fig. 7.  

 

Fig. 7 Extensibility 

For extensibility of a small arc length ds in Li  expressing the change in length (shortening) εi due 

to the axial load in Li as: 

ds
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Expressed as (ΣPL/AE) where Ai is the area of the segment Li and the load Pi is the resultant at 

every ds. In a shortening condition, the shape of the deflection curve did not change only the 

curve has shrunk. The resultant moment is affect by extensibility due to the change of 
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y 
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90 - αi 

Pi 

Li 

180 – (90 - αi) – θi  =  90 – (θi - αi) 
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iii uyx or   , for a new iii uyx or    , . Then for a given deflection curve derived without including 

extensibility that gives iii uyx or   , yields: 
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Alternatively, if would like to include the effect extensibility on the moments then Eq. 27 

becomes4: 

                                                 
4 Note the extensibility Eq. 45 is slightly conservative since   iLds when integrate from 1     to ii xx . 
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This equation can be adjusted with the rotation of the axis for αi of Case III and implemented per 

Eq. 13 and instead of updating xi in Eq. 27 update iu  and Eq. 17 when substituting Eq. 17 in Eq. 

13 to obtain )(xyi  of Eq. 45 to find xi. This assumes the total deflection curve is shortened or 

elongated by yx  , and the solution in Eq. 4, 8, 18 remains the same and only is effected by xi 

and yi as in Eq. 19, where: 
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Finale note on extensibility and large deflections: extensibility may have a minor effect on the 

moments however it can affect the buckling deflection criterion. In general when loading a beam 

the moment and axial load reduces with time however the deflection increases with time until the 

final iii uyx or   ,  occurring at tfinal . In this case the safety factor on the stresses must account for 

the dynamic problem of loading and reloading and care must be taken when using large 

deflections in design. 

 

Comparison with current methods for large deflections: It would be very difficult to draw 

conclusions from one or two examples when comparing the exact solutions with any 

approximate method including finite elements. Thus, comparison is left out to a more in-depth 

study in a different article. The finding in this paper stands alone on its own two feet, is complete 

and it is a bench mark.  

 

 

Conclusion: 

The closed form and general solution of non-linear differential equation of Bernoulli-Euler beam 

theory is solved numerically for general loading function for a non-prismatic beam and can be 

approximated for a non-prismatic curved beam when the presented solution of curvilinear beam 

is not used. In some cases it is solved in closed form for prismatic and non-prismatic beam. In 

general the Elastica, as called by Timoshenko and Gere [2], is solved. 
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APPENDIX A 

 

General algorithm solution of solving for xi for application example Case I: 

From Eq. 27 let the function: 
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When setting 0


x

i there is no solution and the function )(xi  is completely odd but 

translated, increasing and crossing the x axis once. Thus there is only one root xi
*. To proceed to 
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And from Eq. 25: 
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Thus the inflection points are only three and they are: 
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The function becomes: 
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The slopes and the deflections become: 
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And find 
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And let 
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For the numerical procedure, use Newton-Raphson method for systems of nonlinear algebraic 

equations. The following is the result for the Jacobian matrix. For a given function )( ii x from 

Eq. 56 the derivative with respect to xm for m = 1 to n is: 

 

 

 
 
  

 


































 









































1

1

1

1

 

 
2

3
22

22

22

1

 

 

22

122

)(1

)(1

2)(1

1

2
)(  

)(
2

1
2

2642

)12(531
                                                

)(
2)(1

1

2
)(

)(

i

i

i

i

i

i

i

i

x

x

iii

iii

i

mi

xx

xxiii
i

mi
imi

m

k

x

x

k

iii
i

mi

ii
i

mi

xx

xxiii
i

mi
imi

mm

ii

dx

BAxC

BAxC

B

B

BAxCB

B
AxA

x

x

dxBAxC
B

B
k

k

k

xx
B

B

BAxCB

B
AxA

x

x

x

x

 

                                                               ………………………………………………………. (57) 

Where: 
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Thus, choose 



i

j
ii Lx

0

 for the initial condition and the Newton-Raphson method requires the 

updated        1 Jxx . Where, x is the updated vector of ix ,   x is the old vector of ix ,  

 J  is the Jacobian matrix evaluated ix and   is the vector of function of Eq. 56 evaluated ix . 

 

Example: 

In some cases this solution is the exact solution when the loads are actually point loads and 

moment for a beam. Setting up the solution for two point loads and two moments on a beam that 

is of two moment of inertia, see Fig. 8, and substituting yield, 
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Let H consider the variables in Eq. 57 
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And an exact numerical solution is obtained.  

 

FIG.8 - Example 

 

If for example the beam has to be divided to small increments due to the load function or the 

moment of inertia function, a less computational analysis may be selected as in Eq. 28. 
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APPENDIX B 

 

Finding coefficients C1i with no discontinuity in the moment of inertia: 

In Application for Case I, II, and III – (Numerical Solution for Any Load Function Non-

Prismatic Beam including the examples), the moment of inertia at the joints were imposed equal. 

In the following equations this assumption will be shown valid and in Appendix C the derivation 

for discontinues beam for abrupt changes of the moment of inertia will be derived. 

 

To start with the closed form solution of Eq.1 through Eq 18 will be used and the moment of 

inertia is taken as: 
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The following proof is for Case I. All other cases can be done with a similar proof. 

From Eq. 3 the integral term for each segment becomes 
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Using integration by parts starting with  
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Continuing the integration by parts on each integral leads to 
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At xi Eq. 3 for to consecutive segments at the joint becomes: 
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Apply compatibilities yields: 
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Thus from Eq. 63 
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Substituting in Eq. 62 yields; 
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Or, 

ii CC 11 1      ……………………….………………………………………………………. (67)  

Thus: 
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Thus, the coefficients C1i with no discontinuity in the moment of inertia is correct and the 

moment of inertia of the segment for Eq. 60 can be approximated as: 
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APPENDIX C 

 

Finding coefficients C1i with discontinuity in the moment of inertia: 

Application for Case I, II, and III are all similar and only Case I will be addressed. By using Eq. 

64 and E. 65 in Eq. 22 the Zi  can be written at xi as: 
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Thus from Eq. 65 yeilds; 
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Starting with Eq. 25 yields; 
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Thus, all of the C1i can be found consecutively from Eq. 71 and Eq. 30 becomes: 
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So Eq. 31 becomes: 
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So the approximate numerical method with Eq. 28 starts by guessing C10 then find (x1 – x0) from 

Eq. 74 and Eq. 71 with i = 1yields; 
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So C11 can be found. By using Eq. 73 for i = 1yields; 

 
2

1010
2

010
1

12
1

1)()(5.0
1

1 












CxxQxxP
EI

xx
L …………………………………….. (76) 

Now find (x2 – x1) using Eq. 74, Eq. 75 and Eq. 76. , then find (x2 – x0) = (x2 – x1) + (x1 – x0) and 

substitute in Eq. 71 yields; 
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So all of the C1i then find (xi+1 – xi) can be found using Eq. 71 and Eq. 73. Now find (xn – x0) 

from 

)(...........)()()( 012110 xxxxxxxx nnnnn    …………………………………. (78) 

 If (xn – x0) = (L – x0) then x0 = L - (xn – x0), and all of x1 , x2 , ……. , xn-1 can be found. By 

checking the end condition of Eq. 25 or Eq. 72 with Eq. 71 
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If it is not satisfied update C10 with numerical analysis until all the variables are found. For the 

deflection from Eq. 4 yields: 
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To find C2i assume compatibility and enforce: 
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And the solution is found numerically. 

For using Newton-Raphson method in Appendix A, replace Bi in Eq. 43 by 
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 Where C1i is from Eq. 71 and from Eq. 79 
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So all of the C1i can be calculated from the vector {x} and update        1 Jxx . 

Where, x is the updated vector of ix ,   x is the old vector of ix ,   J  is the Jacobian matrix 

evaluated ix and   is the vector of function of Eq. 50 evaluated ix . 
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APPENDIX D 

 

Converting the Equations for Case I application to Elliptic functions: 

Eq. 26 and Eq. 27 in Case I applications can be re-written as in Eq. 48 yields: 
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Where iii BCA    and    ,    are define in Eq. 49 

Re-writing Eq. 77 to become: 
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Now multiply the square in the denominator in Eq. 86 and rearrange yield: 
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Where: 
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And Eq. 87 becomes: 
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Which can be expressed in Elliptic Integral as follows: 
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Where the function F is the elliptic integral of the first kind. 

Similarly Eq. 83 becomes: 
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Now substitute Eq. 89 in 92 yields: 
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The deflection between the joints becomes: 
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Eq. 94 can be re-written and using Eq.84 yields: 
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Now substitute Eq. 89 in 95 yields: 
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Where the function E is the elliptic integral of the second kind. 
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APPENDIX E 

 

Other End Conditions: 

End Condition #1: This condition has a pin at bottom end and rotational fixed at the top end but 

free to translate at the top as in Fig. 9. 

 

Fig. 9 Pin – Rotational Fixed Column 

Thus the moment Q0 at the tip of the column makes 
0@

0



xydx

dy
 Now at  y = yn = 0  and  x = L    

fn(L) = 0  since the moment at the bottom is zero or Eq. 21 becomes: 
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Then from Eq. 49 
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And Eq. 24 does not apply. So rewriting Eq. 23 using Eq. 83 to 
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Therefore by substituting Ai ,  Ai-1 ,  Bi-1 in Eq. 99 then Bi is found and iii p   and   1  , 2 1    are 

found from Eq. 88 and Eq. 89 and the problem is solved using the elliptical integral.  

Note: Eq. 56 and 57 can be written as: 
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 End Condition #2 Same as condition #1 except fixed at x = L as in Fig 10. 

Using Eq. 93 at i = n,  xn = L 
Lxdx
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For fn(L) = 0  since the total moment at the bottom is zero implies  
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Fig. 10 Fixed – Rotational Fixed Column 

 

Thus the procedure is to pick Qn and find Q0 from Eq. 97 and use procedure in condition #1 

above to solve for yi  for given Li  and find all Bi  then  iii p   and   2   ,  1 1    are from Eq. 82 and 

Eq. 83 and check if Eq. 96 is satisfied if not update Qn  and the problem is solved using the 

elliptical integral. 

End Condition #3 Pined both ends as in Fig 11. 

Subdividing the column into two parts Part A and Part B at point E at line a – a  where the slope 

0
dx

dy
 in which it is to be found. Separate the loads of Part A and Part B and solve for y0A for 

Part A using a straight cantilever column fixed at point E. Then solve Part B using end condition 

#1 (pin at bottom end and rotational fixed at the top end but free to translate at the top.) and find 

y0B . Check and see if y0A = y0B . If y0A  not equal to y0B then move point E at line a – a up if y0A > 

y0B or down if y0A < y0B until point E is found.  
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Fig 11 – Pined both ends. 

 

End Condition #4 Fixed both ends.  

This condition is similar to end condition #3 where Part A and B are as condition #2.  
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