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Abstract:

The solution for large deflections of beams that has not been solved in general in 260 years is
now presented in this paper for point loads and moments in any directions along the beam with
various end conditions. Also, the solution can be used for non-prismatic beams with various end
conditions and numerical solution is presented to obtain exact solutions. Curvilinear beams and

extensibility along the beam are also addressed.

Introduction:

The large deflection of beams has been investigated by Bisshopp and Drucker [1] for a point
load on a cantilever beam. Timoshenko and Gere [2] developed the solution for axial load.
Virginia Rohde [3] developed the solution for uniform load on cantilever beam. John H. Law [4]
solved it for a point load at the tip of the beam and a uniform load combined. In this paper the
general solution developed for a prismatic beam and in some cases for non-prismatic. However,
numerical integration maybe needed along with solving compatibilities equations for the
constants of integrations. A more general and preferable numerical solutions for a non-prismatic
beam is also given using only many point loads acting with an angle on the beam with a moment

on the node representing the approximate load. This point load can take any direction on the
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beam bending in the x-x direction or y-y direction of the moment of inertia. Thus the load is to be
resolved to x-x direction and y-y direction of the moment of inertia in each orthogonal deflection
given two non-linear differential equations. By solving each non-linear differential equation the

orthogonal deflection components can be obtained.

An approximation attempt has been investigated by Scott and Caver [5] for all problems in
which the moment can be expressed as a function of the independent variable. However, the
solution presented here is not an approximation and is of a closed form. As a consequence one
can take a load function and divide it into line segments for a non-prismatic beam with no axial
loads and by using the proposed solution the large deflection can be calculated with reasonable

accuracy. Thus, by taking smaller and smaller increments the accuracy is improved.

The solution is based on solving the non-linear differential equation of Bernoulli-Euler beam

theory;

y_o MK

]

Where M(x) is the moment in the direction that corresponds to the moment of inertia /(x), £ is

the modulus of elasticity, y is one of the orthogonal deflection say for /..,. Thus, if the other
deflection is desired, then another equation is needed where M(x) is the moment in the direction
that corresponds to the moment of inertia /,.,(x). It is assumed the modulus of elasticity is
constant and the bending does not alter the length of the beam. Three different closed form
solutions are investigated for three different cases of the non-linear differential equation. In many
ways M(x) is not known until the final deflection is known so will assume M(x) is known in the

equations.



Case I:

In this case assume M(x) = f(x), a function of x only. Thus,
El(x)
o X oo )
VI+ ()
: — 1 .0
Let y=tand = 4/1+(y) = sl and y:c0520

Where @ is a new variable, then substitute € in Eq. 2 yields,

OcosO= f(x) = jcose d&:jf(x)dxw1 or sinezjf(x)arx+c71

1
cos=+1-sin’ @ = i[l—([f(x) dx+Cl)z}2
Thus,

_sing_, [/0di+C
il \/I—Uf(x) e+ G, [

[reac+c,

\/1 [jf(x)abc+C]Z

Where, C, and C; are constants of integration. This off course the solution Scott and Carver

y(x)=

approximated as an infinite series not realizing it can be expressed in a closed form. Note: Eq. 4
gives an integral solution where if the moment is approximated by a curve it can give a better
approximation than small deflection equations approximations. It is seen that if the denominator
of Eq. 4 is approximated as a unity it would give the standard solution for small deflection
approximations. In the case of large deflection it is better to use point loads and moments for

approximating the general loading because it will be shown that it can be presented as elliptical



integrals of the first and second kind. Elliptical solutions enable us to have a closed form solution

as it has been successfully done through recursion [7, 8] instead of integration.

Case II:

(y)

In this case assume =—g(»), a function of y only. This happens in buckling problems

and the moment of inertia is considered constant. Thus,

(1) e, (5)
1+()*
Let y=— = y:_iﬁ _Lzﬁd_y__%
X dx x° dy dx X
By replacing yields

X
V14 (%)

By following case I analysis with interchanging x by y the solution becomes:

d
e s G %
Jl—[[g(y)dyw]z
x(y)— Ig(y)dy+C AV +Cy (®)
J-lemavc]
Case Il1I:



: M : : . .
In this case assume % = h(ax + by), a function of x and y. This happens in combine

bending and buckling problems with point loads and the moment of inertia is considered

constant. Thus,

Y~ h(ax+by)

................................................................................ 9)
Vi+()?

Consider the rotation of axis and let:

u= 4 x4+ b ¥
\/az+b2 \/az+b2
............................................................................ (10)
V= 4 x- b y
\/az+b2 \/a2+b2
Where u and v are the new variables then /(ax +by) = h(\/ a’ + bzu)
[ .2 2 [ .2 2
x=a—+b(u+v)=A(u+v) where A=a—+b
2a 2a
............................................. (11)
Na® +b’ a’ +b’
=—Wu—-v)=Bu- here B=——
y % u-v)=Bu-v) w %
And,
dx
—=A(1+v
T (1+v)
............................................................................................... (12)
dy
—=B(1-v
T (1-v)



Q_E 1—-v _a 1-v
dex All+v bl1+v

......................................... (13)
dzy_gi[l—v}@_gir—vl 1 a -2
dx>  bdull+v]dx bdul1+v]A1+v) Ab(1+v)
Or
3
2
jy o =2a ¥ 1 _ 4a’p? li
= N .\ 2 - 2 3
(1/1"‘(')./)2)! Ab (1+7) 1_,_“2(1_‘}) (a2+b2) 2 —a2 Y B —a?Y |2
b \1+v vt |+l 5
b”+a b”+a
......................................... (14)
Let
b — g2 b2 — g2 2
+ =.[1— tan @
’ a’+b’ [a2+ zj
................................................................... (15)
b*—a’ ’ 0
v=l-] 53 2
a +b cos” @
Where @ is a new variable, then substitute & in Eq. 14 yields;
Ocos0 =—hla* +b°u) = sin@z—fh(\/a2+b2u)du +C
.................................... (16)

cosd = i\/l— [—Jh(\/az +b2u)du + CIJZ



_zh [a2_b2j2 Ih(\/a2+b2u)du +C, +a2—b2
- - 2, 72
\/l—hh(\/a2+b2u)du +C1Jz @ +b

jh( a’+b’u )du +C, 2’ — b’

2 2
v=% ( jj‘ du —
a’+b° \/1 |J a +b2 )du +CJz a+b

Thus, after integrating with respect to u, substitute x and y from Eq. 10 and an explicit equation

of deflection in x and y is obtained. Another way of calculating x and y is pick u find v from Eq.

18 then find x and y from Eq. 11.

Hence, the solution for the nonlinear differential equation has been obtained for three cases and

applications will follow.

Application for Case | - Numerical Solution for Any Load Function Non-Prismatic Beam:

This example is to demonstrate the solution for a cantilever beam. Other boundary conditions for
beams are similar. First divide the beam into segmental beams of each length L; and on each
node of the segment insert the equivalent load P; and moment Q; to approximate the real load,

see FIG.1. The moment on the segment beam at x; is:



M,=F(x-x,)+0, for x,<x<x
M, =F(x-x))+0,+PF(x—x)+0Q, for x <x<ux,

i
M, :Z(;Pj(x—xj)+Qj for X, SX<X
=

n-1 —

n—1
MH:ZPj(x—xj)—i-Qj for x, ,<x<x,
j=0

Where, all x; are unknown.

P;
P Pis
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Qo
Py \ Segment
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| Length=L;
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X
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x,=L
Y

FIG.1 — Cantilever Beam Analysis — Non-Prismatic Beam



Point Loads are in the y direction

Now the moment of inertia;

L,=1(Ly)  Where Ly =) Ly oooiiiiiiiiiii i (20)
=0

Where, the moment of inertia is approximated at each beam segment to be constant” and the

moment of inertia function is assumed continuous. Thus:

M, _ 1|5 _
fi(x)zﬁ—E][;Pj(x xj)+Qj1 ............................................................... (21)

i

Substitute Eq. 21 in Eq. 3 and find the slope on the segmental beam i yield:

1< . ~
H{go.spj(x—xj) +0;(x xj)}(:li

1

yi(x) = for x, <x<x,,

2

1 i

1{12]{2(‘;0.5}?,@—%)2 +Qj(x—xj)}+01i}
i LJj=

Apply compatibilities yield:

Vi, (x)=p(x,) at X=X
Seg.Bm.i—1 to Seg.Bm.i

At x =L, where L is the length of the beam at x = x,= L,
Vo) = (L) =0 (24)

Where 7 is the number of beam segments and n+1 is the total numbers of beam segments; apply

Eq. 24 in Eq. 22 yields:

2 Note: this approximation does not mean there are stress singularities due to sharp corners at the discontinuities
where each segment meets. All it means is the actual deflection of that segment can be approximated with the
deflection of a beam with constant moment of inertia.



) 1 n—1
y,(L)=0 = T{Z}O.SPJ,(L—)C])Q+Q‘/.(L—xj)}+C1n_l =0
1| J=

n—

of e (25)

1 | & )
Cl, _,=Cl :_EI |:ZOO'5E(L_xj)2 +Qj(L—xj)} since P =0, =0
J=

n-1
When applying Eq. 23 for all i yield:

Cl,=Cl,=Cl, =---- =Cl,, =Cl and

;[iOSP(x x) +0,(x- x)}+C1
yi(x)= . 2
\/ { 20 SPj(x—xj)2+Qj(x—xj)}+Cl}

z]O

for x,<x<x,,

assuming /, , = I, at the joints (See Appendix B). Now impose the length of the beam segment

to be un-extendible, yields,

L=[ "1+ (3,(0) dx or
dx

L :j TS
\/1l:l;][zl:O.SPJ(xxj)2 +Qj(x—xj)}+C1:l

=

Eq. 27 does not lend itself to a simple solution (see appendix D for setting up Elliptic functions)
and numerically complex. To simplify the equation assume the increments are small enough such
that the slope throughout the interval of x; <x <x;4; is the same (see Appendix A for the general

solution), so:

P Z T(X001) oo (28)

Thus,
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L = N (30)

\/lleII{Z[:O.SP/(xi —xj)2 +0,(x, —xj)}JrCl:l

i | Jj=0

Thus, at i = 0 yields:

X —Xg X —Xg

T eler 31)

L, =

1
\/1|: [O'SPO(xo _Xo)2 + 0, (x, _xo)]+ Cl
El,
Ati=1 yields

X, —X
_ 2~ M
L =

1 2 _ L —x.)? - 2
\/1—{12']1[0.51)0(3%—)61) +0, (%, xl)]+ EI, [0'5Pl(xl X))+ 0 (x xl)]+C1:|

= 225 (32)

1 . ) ’
\/1—[EI][O.5P1(xo—xl) +0,(x, - x)]+C1

Substitute x; — xo from Eq. 31 in Eq. 32, for a given C1 and x, — x; is found.

Ati=2yields

X3 =X,

L, =

1 2 _ L —x,)? - 2
\/I{H[O-Smxz—xo) 0 —xle o Psh ) 0. xl’]wl}
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Substitute x; —xo from Eq. 31 and x, — x; from Eq. 32 in Eq. 33, for a given C1 and x3 —x; is

found, where x, — xo= (x2 —x1) + (X1 — X0).

Thus, if guessing C1 then find xi+; — x;, can be found since the denominator of Eq. 30 is always

n
known from previous equations. And since Z (x
i=0

W —X)=x,—x,=L—-Xx,,xocan be found.

Therefore for a given C1 x¢,x1,x2, ....... , X»-1 can be solved, then proceed by checking the
end slope of Eq. 24 or Eq. 25. If it is not satisfied update C1 with numerical analysis until all the

variables are found. For the deflection from Eq. 4 yields:

1|3 ) B
EI[;OSPJ (x=x;)"+0Q,(x—x,)

}rCl
dx+C2, for x, <x<x,

\/1L{jl[{zilo.SPj(xxj)2 +Qj(x—xj)}+Cl}

i /=0

Y0 =]

To find C2; assume compatibility and enforce:

yn(xn):yn([’):() a'ndﬁnd C2n—1
yn—l (‘xn—l) = yn (‘xn—l) and ﬁnd C2n—2
etc.....

And the solution is found numerically.

Application for Case Il - Numerical Solution for Any Load Function Non-Prismatic Beam:

This solution is very similar to the application of Case I or the previous application but instead of
using x and x; substitute for y and y; and can find C1, yy, y1, ...... , n1 and C2; for the

deflection of Eq. 8 see FIG.2.
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FIG.2 — Cantilever Beam Analysis — Non-Prismatic Beam

Point Loads are in the x direction

Application for Case |11 - Numerical Solution for Any L oad Function Non-Prismatic Beam:

Again implement the solution using similar procedures as in the application of Case I, see FIG.3.
If assume at x; the resultant moment in the x and y direction is M,; and M,; and if assume at x; the

resultant force in the x and y direction is R,; and R,; , then the moment for Eq. 9 becomes:

R.Xl
El,

1

h(ax +bx) =—(x—-X,)

R,

(y—F )= h

(=3 where
T (34.1)

— yi

X +—2  and +—
X. = X. =Y.
; R, Yi =D R

yi

Thus, if translating temporarily the axis to a local axis with X, and y, Eq. 9 becomes:

13



> R. R,
S —h(ax+by)=ax+by, where a =——2 andbh =——L ... (34.2)
( /T(y.)z)l EI El,

Note: for segment i-1 and segment i at x = x; the resultants are the same so

a, =a,; and b, =D, | (34.3)
Thus if impose

Yia(x)=y(x;)) at  x=ux
Seg.Bm.i—1 to Seg.Bm.i
Which means from Eq. 13 and 34.3 yields:

v, (u,)=v,(u,) at U= U, et (3%)
This impliesCl, =Cl, =Cl, =----- =Cl1, , =Cl1, assuming [/, , = I, at the joints (Se Appendix
B).uy,u,...... , U, can be found by using the approximation:
Vi) Z (X)) 0T Vi(U) ZV(Uiy) e (36)
Thus,

A Ay al b (a2 b 2
L =A7 + AV = A, T a0 [Tl‘(lw'i)J +[Tj’(lv}-)]
........................................................... (37)
Or
JaZ +07 [1v,e) T [1-9,a)

L =, —u,) 5 \/{ " } { b } ............................................. (38)
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Which is again for a given C1 u; ‘s can be found from Eq. 38. When using Eq.10:
n—1

a . o
z Uy —u;)=u, —uy = +12L —u,. Thus, all u;’s can be obtained by back substitutions
i=0 V anfl + bn—l

with checking if C1 satisfies:

Ya(x,)=y,(L)=0
or

.............................................. (39)
a
1-v | —2— L
an—l 1 - ‘}i (un) _ an_l V alf—l + br12—1 _ 0
bn—l 1 + ‘>i (un) bn—l a
l+v | —2——L
V aj—l + b;f—l
Now, find C2,.; from the last segment to satisfy
V()= v, | et =i e (40)
aj—l + bj—l ai—l + bj—l

and find all of C2; from the compatibility equation of deflection y; and using Eq. 11:

U, 1 = Vua (unfl) =U,,—-v, (unfl) and find C2n72

un—2 - Vn—2 (un—Z) = un—2 - Vn—l (un—Z) and ﬁnd Czn—3

etc.....

When done find all of vy, vy, ......... , Vo1 then substitute in Eq. 11 to find x; and y; .
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FIG.3 — Cantilever Beam Analysis — Non-Prismatic Beam

Point Loads are in any direction

Application Examples of Case 111 Numerical Solution:

(a) Fishing Pole: an application for Case III is shown on FIG. 4, where the beam has an angle
o with the horizontal and a load Py and P; hanging from the beam. One common
application is a fishing pole that has a fish that has the load P, from the vertical and P, =
0. In this case when varying the angle a with the horizontal the moment changes and the
deflection curve change giving a smaller or bigger moment with various elastic curves.
This affects the ability to pull the fishing with the real and having various controls on

catching the fish by puling or letting go the line. An experienced fisherman does this

16



procedure naturally and gets the credit for not loosing the fish. A good fishing rod would
be designed to have a moderate elastic curve configuration when varying Py and the angle

a. The equations for a non prismatic fishing pole can be:

P =Fcosa and P, =PFsina Thus the function 7, in Eq.9 becomes:

P, .
hy(ayx,b,y) :ﬁ[(x_xo)cosa_(y_yo)sma]

0
or

i P
h(a,x,b,y) = Zﬁkx—xj)cosa—(y—yj)sina]= a,(x—%)+b,(y -7,

Jj=0 i

where,
i i
Pyx; ZP/’)’/
- El, - LI, i P i P,
= _ Jj=0 i = _ Jj=0 i _ J _ J oo
N=—Tp — V= p — &= cosa and b, = Z sina
_/ J j=0 =4 j=0 £d;
Jj=0 Ii Jj=0 ]i

In this situation each beam segment can be translated in a new local axis by X, and y, to

have Eq. 10 ready for rotation of axis to satisfy Eq. 9 and then translate to the global axis.

For example translate the local axis by X, and y,, and substitute in Eq. 17 and 18 the new
coordinates (u—u,) and (v—v,) for u and v in the solution of Eq. 17 and Eq. 18, where
u; and v, are obtained from substituting X, and y, in equation 10 with the replacement of
abya, and bbyb,.

(b) Curved Beam: Another application example where the beam is a non-prismatic curved

beam. Thus, if subdivide the curved beam to a smaller segments cantilever straight

17



beams® with constant moment of inertia as in using FIG. 3. If ¢ is the angle the
segmental beams make with the horizontal, then the problem can be solved by taking
each deflection curve derived from the local axis of the segmental beam and rotated by

the angle «; then translate by X, and y, to the global axis and the problem can be solved

numerically.

Ly, Iy

FIG.4 — Fishing Pole Example (a)

3 Note: this approximation does not mean there are stress singularities due to sharp corners at the discontinuities
where each segment meets. All it means is the actual deflection of the slightly curved segment can be approximated
with the deflection of a beam with straight segment with a constant moment of inertia.
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(c) Bow and Arrow: The ancient structural problem in archeries or shooting bow and arrow

can finally be solved. Amazingly, can design a curved non-prismatic beam to give the
proper deflection curve for a human precise measurement giving the best comfortable
result for a more accurate bull’s-eye. Possibly, a unique design for each athlete, so
putting tension by changing the string size can be less desirable. To simplify the
equations and show the example, a non-prismatic curved beam will not be used but use a

non-prismatic straight beam, see FIG. 5. The function #4; in Eq. 9 becomes:

Yo

A

—»0.5P

FIG.5 — Bow and Arrow Example (c)

(g by) = ——| (=%, ){g]—(y—yo)cotﬂ(gﬂ

- _<x—x)(5)—<y—y> Cx) (2]
EI, "\ 2 I (L —x,)*\2
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NS T S R— |

~ | x5 o [
El, "\ 2 V- -x) 2

=a,(x—x,)+b;,(y—y,)

where

a, :L and b = P (L—x)

' 2EI, ' 2EI 1> —(L-x,)

In this situation each beam segment can be translated by x, and y,, in its local axis to

satisfy Eq. 9 and then to the global axis. For example translate by x, and y, and substitute
in Eq. 17 and 18 by the new coordinates (u-u;) and (v-v;) for u and v of Eq. 17 and Eq. 18,
where %, and v, are obtained from substituting x, and y, in equation 10 with the
replacement of abya, and bbybd,.

Column with Load through Fixed Point: The problem of column with load through fixed

point was presented by Timoshenko and Gere [2]. Jong-Dar Yau [6] presented a solution
for Closed-Form Solution of Large Deflection for a Guyed Cantilever Column Pulled by
an Inclination Cable. A more general problem is to allow the fixed point D to have a
coordinate point (x4, ¥4) instead of the coordinate point (x4, 0) as in FIG. 6. As if the tip of
the column is attached by a cable with a shackle to point D and the shackle is being
tightened. The column is assumed a non-prismatic. This situation can also happen in a

vertical fishing pole, where the fish pulls with an angle . Thus, moment becomes:

20



M:_(‘x—xo)Py_(y_yO)Px
= —(r—x,)Psin i (y— y,)Pcos f

) (J’dz_yo) 2 — (=) (Xdz_XO) 2
\/(yd_yo) +(x; —Xp) \/(yd_yo) +(x; — %)

P
h(ax,b.y)=—1|(x—x
(a,x,b,y) EI,»(

=a,(x—x,)+b,(y—y,)
where,
_ P (ydz_yO) 2 and b =— P (Xdz_XO) 2
Eli \/(yd_yo) +(xd_x0) E]i \/(yd_yo) +(xd_x0)

a

i i

Yy
Yo P IXO
L1 B
Xd

7773

Vd

<>
D
X

FIG.6 - Column with Load through Fixed Point (d)

In this situation each column segment can be translated by x, and y,, in its local axis to

satisfy Eq. 9 and then to the global axis. For example translate by x( and yy, and substitute

in Eq. 17 and 18 by the new coordinates (u-u«;) and (v-v;) for u and v of Eq. 17 and Eq. 18,
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where u; and v, are obtained from substituting x, and y, in equation 10 with the
replacement of a by a, and bbyb,.

The £signin Eq. 3, 7 and 17:

The =+ sign in the solution of Eq. 3, 7 and 17 can be used interchangeably when the slope of the
deflection curve goes to infinity at a point and the slope change sign. Another word the
deflection curve is not a function anymore and becomes circular. In Eq. 17 v = o when

vy =>a/b . At that point the correct sign of Eq. 17 must be used.

Other End Condition: See Appendix E

Curvilinear Beams:

For a curvilinear beam with a function y = R(x) the new radius of curvature must satisfy the
following equation:

1
r}’lGW =
MG T
EI Yo

So that if M(x) = 0 the radius of curvature does not change and remain of the function y = R(x).

Thus Eq. 1 becomes:

i M Rw

WisGr ) Fe (\/1+[R(x)]2)3

And solution is as Eq. 3 and Eq. 4 by replacing f{(x) by #(x).
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Extensibility:

In order to account for extensibility of the beam will analyze a beam segment L,. Let o; be the
directional angle of the load P; and 6, the angle at P; representing the slope of the beam at that

point as in Fig. 7.

180 - (90 - ;) —6; = 90— (6; - ;)

Fig. 7 Extensibility
For extensibility of a small arc length ds in L; expressing the change in length (shortening) & due

to the axial load in L, as:

xa P sin(@ - a,
£ =-— j %ds ......................................................................... (43)

i

Expressed as (XPL/AE) where 4;is the area of the segment L; and the load P; is the resultant at
every ds. In a shortening condition, the shape of the deflection curve did not change only the

curve has shrunk. The resultant moment is affect by extensibility due to the change of
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x,,y;,oru,foranew X, ,y, or u,. Then for a given deflection curve derived without including
extensibility that gives x; , y, or i, yields:

P sin(f0—-«a.)

Zaf: ZJ. ”l—coseds

]

schosa —cosfsina ; )dx

_x _ /+1 ds
zjx AjE ds
; Pj(?}cosaj—;sinajj
=.X'l.—Z:J.XI+1 § $ dx
j=0 Xj A]E
; Pj(dycosa —singa j
Xt X X
=X, - x
jzoj."/ AjE ds
d
d

OSCZ —sina j

J Xt 1
=X, — dx
on I AE 1+ (dy/ dx)
Z/‘:J‘xmPj()';cosaj—sinOtj) 1 d
=X, — X =
e aE Gy
i P sm(@ a;)
=V +Z€ J=Yi= Zj — Sinfds (44)
I ex, P ycosa —sin aj) by
dx —
ijj AJE 1 + (y)Z

Alternatively, if would like to include the effect extensibility on the moments then Eq. 27

4
becomes™:

* Note the extensibility Eq. 45 is slightly conservative since Ids # L, when integrate from x; to X,
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Li—¢ = J.:M yi+ [yz (x)]z dx

or

L j /71+[y(x) dx J~ 1Psm(é’ a)

—J. L+ (o] dx - I

=[ V1= b@Pac- [

s1nt9cosc;il—?cosﬁsma ) 1+ [, (0

dy dx
gCOSCf —jSIHCZ
Sy R
yi(x)

cosa; — sing,

1
I+ ] I+ @)

VI+ [ o] dx

Li AE
J~x 2 Py, (x)cosa, —sina, ]
: AE
—y,)P.cosa, N (x,,, —x, )P, sina,
AE AE

i i

This equation can be adjusted with the rotation of the axis for a; of Case III and implemented per

Eq. 13 and instead of updating x; in Eq. 27 update u, and Eq. 17 when substituting Eq. 17 in Eq.

13 to obtain y,(x) of Eq. 45 to find x;. This assumes the total deflection curve is shortened or

elongated by ¢, & and the solution in Eq. 4, 8, 18 remains the same and only is effected by x;

and y; as in Eq. 19, where:

= XMP i 6_ ;
MCOS@CZS

=21,

i i

i=0 ' i

2l Xf+1P i 0_ ; .
& =— J. an@ds
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Finale note on extensibility and large deflections: extensibility may have a minor effect on the

moments however it can affect the buckling deflection criterion. In general when loading a beam
the moment and axial load reduces with time however the deflection increases with time until the
final x, , y, oru, occurring at ¢4, . In this case the safety factor on the stresses must account for
the dynamic problem of loading and reloading and care must be taken when using large

deflections in design.

Comparison with current methods for large deflections: It would be very difficult to draw

conclusions from one or two examples when comparing the exact solutions with any
approximate method including finite elements. Thus, comparison is left out to a more in-depth
study in a different article. The finding in this paper stands alone on its own two feet, is complete

and it is a bench mark.

Conclusion:

The closed form and general solution of non-linear differential equation of Bernoulli-Euler beam
theory is solved numerically for general loading function for a non-prismatic beam and can be
approximated for a non-prismatic curved beam when the presented solution of curvilinear beam
is not used. In some cases it is solved in closed form for prismatic and non-prismatic beam. In

general the Elastica, as called by Timoshenko and Gere [2], is solved.

26



References:

1.

Bisshopp, K. E., and Drucker, D. C., “Large Deflections of Cantilever Beams,” Quarterly
of Applied Mathematics, Vol. 3, 1945, pp. 272-275

Timoshenko, S. P. and Gere, J. M., “Theory of Elastic Stability” 1961, McGraw-Hill
Book Company, New York, pp. 76-82 and pp. 55-57

Rohde, F. V., “Large Deflection of Cantilever Beam with a Uniformly Distributed Load,”
Quarterly of Applied Mathematics, Vol. 11, 1953, pp. 337-338

Lau, John H. “Large Deflection of Cantilever Beams,” Journal of Engineering Mechanics
Division, Proceedings of the American Society of Civil Engineers, Vol. 107, NO. EM1,
February, 1981. pp. 259-264

Scott, E. J. and Carver, D. R. “On the Nonlinear Differential Equation for Beam
Deflection,” ASME Applied Mechanics Division June, 1955, pp. 245-248.

Jong-Dar Yau "Closed-Form Solution of Large Deflection for a Guyed Cantilever
Column Pulled by an Inclination Cable" Journal of Marine and Technology, Vol. 18, No.
1,2010, pp 120-136

Nellis, J. William "Tables of Elliptic Integrals" NASA Contractor Report NASA CR-289
Prepared under Grant No. NsG-293 by IOWA State University, Ames, lowa for
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION . WASHINGTON,

D. C. AUGUST 1965

. B. C. Carlson "Three Improvements in Reduction and Computation of Elliptic Integrals"

Journal of Research of National Institute of Standards and Technology, Volume 107,

Number 5, September-October 2002, pp 413-418

27



APPENDIX A

General algorithm solution of solving for x; for application example Case I:

From Eq. 27 let the function:

dx

\/l—l:El]{iO.SPj(x—xj)z +Qj(x—xj)}+Cl}

i [J=0

(Di(x):J.

00,
When setting a—’ = O there is no solution and the function @, (x) 1s completely odd but
X

translated, increasing and crossing the x axis once. Thus there is only one root x; . To proceed to

2

. . : D, .
find the inflection points for ——+ = O rewrite Eq. 47 to be:

ox
D, (x) = d € (48)
Ji-lc -4+ 8]
Where:
2. (Px;=0))
A, ="
2P,
j=0
1 i
B =—ACi+——> (0.5P x> —0,x,)+Cl. oo, (49)
i j=0
C = Lio 5P
"ELZ T

i j=0

And from Eq. 25:
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1

Cl=—F[Hz_l“o.spj(L—xj)2 F QL =X,) | (50)

n-1 | j=0

Thus the inflection points are only three and they are:

Xy =4,
B oo 51
Xps =4+ _Fl eb

The function becomes:

dx +c:I[l+

f 1.3:5- 2k ~1)
Vi-lc-4)+8]

D (x) =
) Z 462k

[Ci(x—Ai)2+Bi]2k}dx+c

.................................................. (52)
The slopes and the deflections become:
(x—A) +B,
§() = S A+ B : FOT X, S X S X orererer oo (53)
JI-lc -4+ 8]
_ 2
yl.(x)=j [C"(x 4) +B"]dx +C2, for x,<x<x,
JI-lc -4y +B]
1 2 1.3:5--(2k -1) R
=—C.(x—A4) +B(x—A4)+ C(x—A4) +B, dx+C2,
JC =4+ B(x-4) I[Z W T SRR }x ,
_ 2
I lc.(z-4) +B]a: c2
i-le-4) + BT
................................................... (54)
And find
L
€2, == y,(x)dx
SO OP PR OTRPTOPRP (55)

And let
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1O B STV P ) P
k=l 2.4.6---2k

v ()=]" -

k?(x A4) +B,[

For the numerical procedure, use Newton-Raphson method for systems of nonlinear algebraic

equations. The following is the result for the Jacobian matrix. For a given function y/,(x,) from

Eq. 56 the derivative with respect to x,, for m =1 to n is:

awxa):{a:_ ) } 1 .
ox, ox, 2B, \/1 [C (x—4) +B] ‘ 2B,

X=Xig

mi

(X —x;)

21-3-5---(2k-1) l ﬂ o ) i "
+; 2.4.6---2k {2k+2} B, jx,- [Ci(x 4,) +Bi] dx

ox 1 B, ¢t 1+|C/(x—4,)" + B,
_|:§_Amz_( _A,)2;I:| . > sz. [ ( ) ]
m i \/1 [C(x—A) + B, o, [1 [c(x A,) +B]}
................................................................ (57)
Where:
A4, = Z.Pm form<i and
2P
=0
A,=0 m>i
........................ (58)
B, =-24A4,C + B =0 | 1 [P, (L-x,)+0,] form<i and
EI EI
B . = ]'[P(L x)+0,] m>i
mi E] n
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Thus, choose x, = ZLI. for the initial condition and the Newton-Raphson method requires the
J=0

updated {x}= {x}-[J] " {w}. Where, {x}is the updated vector of X, {x}is the old vector of x,,

[/] is the Jacobian matrix evaluated x,and {i}is the vector of function of Eq. 56 evaluated x, .

Example:
In some cases this solution is the exact solution when the loads are actually point loads and
moment for a beam. Setting up the solution for two point loads and two moments on a beam that

is of two moment of inertia, see Fig. 8, and substituting yield,

Cl= —ﬁ[O.SPO(L—xO)Z +05P(L-x,)" +Qy(L—x,)+ 0 (L—x,)]

EI,
2 1 2
B, =—A2Cy +—[0.5Px2 - Qyx, ]+ C1
EI,
A, =1 A4, =0
1

1
Bm—EZUML—MJ+QJ &O—EZGHL—m)+g)

A _x0P0+x1Pl _(Q0+Q1)
L=

Fy+ A
El,
B, =-A’C, + ﬁ[o.spoxg +0.5Px) —(Qyx, + Oy, )]+ Cl
1
_ F A, = A
o1 11

R+ R forh

p P
B(n:E_]Ol[L_Al] Bm:E_]]I[L_AI]
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Let H consider the variables in Eq. 57

0
o =H,,(xy,%,4y,B,,Cy,4,,B,,)

ox,,
oy
: =H, (x,x,4,8B,,C,4,,B,)
axlﬂ
J= H o (x,%), 4y, By, Cos Aygs Boy)  Hy (%, %), 44, B,,Cy, 4,9, By)

H, (xy,x,,4,,B,,C,4y,,By) H, (xy,x,4,,B,,C,4,,B,))

And an exact numerical solution is obtained.

X1

x,=L

FIG.8 - Example

If for example the beam has to be divided to small increments due to the load function or the

moment of inertia function, a less computational analysis may be selected as in Eq. 28.
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APPENDIX B

Finding coefficients C1; with no discontinuity in the moment of inertia:

In Application for Case I, 11, and III — (Numerical Solution for Any Load Function Non-
Prismatic Beam including the examples), the moment of inertia at the joints were imposed equal.
In the following equations this assumption will be shown valid and in Appendix C the derivation

for discontinues beam for abrupt changes of the moment of inertia will be derived.

To start with the closed form solution of Eq.1 through Eq 18 will be used and the moment of

inertia is taken as:

= Z a x for Case | defined in the interval 0<x <L

El(x)
L = Z a,y forCase Il  definedin theinterval 0<y <y, =>n=12,.... ,r andr # o
ZZ[(}O n=0

1

=>au for CaseIll  definedin theinterval 0<u <u,

The following proof is for Case I. All other cases can be done with a similar proof.

From Eq. 3 the integral term for each segment becomes

Zi(x)+C1i:J.f(x)dx+C1i:J(Zanx”}[ZPj(x—xj)+ijdx+Cli for x, <x<x,
n=0 j=0
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Using integration by parts starting with

u=Y a,x" and dv=Y P(x-x,)+Q, yeilds,
— i=0

Z.(x) :[ianxn][iw+Qj(x—xj)J+J‘(Zna x" j[2¥+gj(x—xj)de

n=0 =0 =0

............................................................. (61)
Continuing the integration by parts on each integral leads to
i P - k+2 ) - k+1
Z,(x)= Z Z a,x"" || () + Q,x~x,) for x,<x<x,,
s k)' w (k+2)! (k+1)!
...................................... (62)
At x; Eq. 3 for to consecutive segments at the joint becomes:
Z.(x.)+Cl.
yi(xi): Z(XI)+ l and
N1-[z.Ge)+ 1
.................................................................... (63)
) Z (x)+Cl_
Via(x) = 1 1 >
=z 0+t
Apply compatibilities yields:
R (64)
Seg.Bm.i—1 to Seg.Bm.i
Thus from Eq. 63
Z (X)) +CL =Z.(x,)FCL, o (65)

Substituting in Eq. 62 yields;

n! n—k i—1 Pj (xi _xj)k+2 Qj (xl_ _xj)k+1
Z, (x)=Z/(x,)= Z{(Z By J[Z <) + D! ]}(66)

n=k Jj=0

34



Ol = O, (67)
Thus:
Cl,=Cl,=Cl, =----- =CL, = Cl o (68)

Thus, the coefficients C1; with no discontinuity in the moment of inertia is correct and the

moment of inertia of the segment for Eq. 60 can be approximated as:

li+1
L 1(x) ; 1
El,, == where [, = ZLJ, and /,,, = ZLJ. ............................................... (69)
Li+1 Jj=0 J=0
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APPENDIX C

Finding coefficients C1; with discontinuity in the moment of inertia:

Application for Case I, II, and III are all similar and only Case I will be addressed. By using Eq.

64 and E. 65 in Eq. 22 the Z; can be written at x; as:

i—1
Z, =S 05P (v, —x,) 40, (x, - x))]
Eli—l Jj=0
and (70)
1 i—1 5
Z = EZ; 0.5P,(x, —x,)* + 0, (x, - x,)]
i J=

Thus from Eq. 65 yeilds;

Cl,, = {L—L}Zl 0.5P,(x, = x,) +0,(x, —x )]+ €1,

EI;‘ Eli—l J=0
OF (71)
Cl = {L—L}E[O.SP.()@ -x.)"+0.(x. —x.)]+ 1,
i EI., EI = J\Ti J AN J i

Starting with Eq. 25 yields;

1
Cl,, =- I

n-1| j=

["Z_Eo.spj (L-x,)*+0,(L—x, )} OSSP S SO PSP USPSPRPRPOPRPOPOO (72)

Thus, all of the C1; can be found consecutively from Eq. 71 and Eq. 30 becomes:

L = U (73)

\/1{;{;0.53@ —x,)" +0;(x, —x‘,)}CL}

i

So Eq. 31 becomes:
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So the approximate numerical method with Eq. 28 starts by guessing C1, then find (x; —xo) from

Eq. 74 and Eq. 71 with i = lyields;

cl,

L}[O - EL]J 1052, (x, = x,) + 0y (3, = x) ]+ Cly v (75)

So C1, can be found. By using Eq. 73 for i = lyields;

Xy, =X

L =

\/1_{;]1[0'5]30()‘1 —x,)" + 0, (x, _xo)]"'Cll}

Now find (x; — x;) using Eq. 74, Eq. 75 and Eq. 76. , then find (x; —x0) = (x2 — x1) + (x; —x0) and

substitute in Eq. 71 yields;

1 1
Cl =) ————|[05B,(x, —x,)> + 0,(x, —x,) + 0.5B, (x, — x,)> + Oy (x> — x,)]+ C1,
El, EI,

So all of the C1; then find (x;+; — x;) can be found using Eq. 71 and Eq. 73. Now find (x, — xo)

from
(x,=x))=(x, —x,_ )+ (x,, =X, ,)+ e F (X = X0) e (78)
If (x,, — x0) = (L — xo) then xo = L - (x, — x¢), and all of x1 , x5, ....... , Xy.1 can be found. By

checking the end condition of Eq. 25 or Eq. 72 with Eq. 71
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y,(L)=0 = ! {nZI:O.SPj(L—xj)Z JFQJ.(L—x‘,)}rCLi_1 =0

n-1 | j=0
or
Cl,, =- 1 {nzlo.spj (L-x,)"+0,(L- x_/)} since P, =0, =0
El, J=0
..................... (79)
check if

1 1 n—1 5
cl = {Eln_z -— }2[0.511 (X, %) +0,(x,, —x,)]+C1,,

n-1 _|j=0

If it is not satisfied update C1, with numerical analysis until all the variables are found. For the

deflection from Eq. 4 yields:

Ell{Zo.spj(x—xj)2 +Qj(x—xj)}+c71,.
v (x) :.[ L dx+C2,

\/1{;]{205%@%)2 +Qj(x—xj)}+01i}

for x, <x<x,,

i [ Jj=0

To find C2; assume compatibility and enforce:

v, (x,)=y,(L)=0 andfind C2
yn—l (‘xn—l) = yn (‘xn—l) and ﬁnd C2n—2
etc.....

And the solution is found numerically.

For using Newton-Raphson method in Appendix A, replace B; in Eq. 43 by
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Y (B, -0,)

2P
Jj=0

4, =

1

B, =-AC, +ﬁ2(0.5pjxj —0,x,)+Cly oo (81)

i j=0

1 i
C = EZO.spj

i j=0

Where C1; is from Eq. 71 and from Eq. 79

n—1
Cl,, :—% > 05P(L-x;)" +0Q,(L-x,)| since P,=0,=0......ccccc.ce... (82)
n—-1 |_Jj=0

So all of the C1; can be calculated from the vector {x} and update {x}= {x}—[/] " {w}.

Where, {X}is the updated vector of X,, {x}is the old vector of x,, [J] is the Jacobian matrix

evaluated x,and { }is the vector of function of Eq. 50 evaluated x,.
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APPENDIX D

Converting the Equations for Case | application to Elliptic functions:

Eq. 26 and Eq. 27 in Case I applications can be re-written as in Eq. 48 yields:

Ll. _ J‘xm dx 2
o i-le -4+ 8]
e (83)
j = C.(x—4,) +B,
JI-lc-4)+8]
Where 4,, C, and B, are define in Eq. 49
Re-writing Eq. 77 to become:
L=[" dx OO . (84)
-4y -a-8)+1]
Now let
JC (x—4)=\1-B,cos¢  with ,[C,dx=—\[1-B, sing
and (85)
Ci(x— Ai)2 =(1 _Bi)CO32 ¢
R L/ [ sin ¢ e (86)
G i-[-a-B)sin? g+1]
Now multiply the square in the denominator in Eq. 86 and rearrange yield:
1 o2 d¢
L =- (87)
e

N T
\/1—( _ ’} sin?
2

Where:
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and (88)
C./2
¢2[+1 = COS_ll: lB (xm - Ai ):| = COS_][ : (xm - A[ ):l
B P
Where
1-B,
I e TN 89

1z 2 (89)

And Eq. 87 becomes:

I o2 do
L =—
l \/2C,- 'L”“ \/l—piz sin’® ¢

Which can be expressed in Elliptic Integral as follows:

L, =ﬁ[F(pi,qﬁzH])—F(pi,mi)] ................................................................ (91)

Where the function F is the elliptic integral of the first kind.

Similarly Eq. 83 becomes:

7.(x) = Cx-A4) ~(1-B8)+1 SR
J-lc - 4)* —a-B)+1]

Now substitute Eq. 89 in 92 yields:

—-2p’sin® g+1

Vi(x) = - )
2p,sing,/1—p; sin” ¢

X :Lcos¢+A[

JC. /2

The deflection between the joints becomes:
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C.(x—A4) —(1-B,)+1

j ydx=y,, -y, = j = X (94)
J-le -4 -a-8)+1]
Eq. 94 can be re-written and using Eq.84 yields:
C.(x—4,)'-(1-B,) 1

dx +

dx
—[Cl.(x—Al.)z —(I—Bi)+1]2 \/1—[Cl.(x—Al-)2 —(I—B,-)+1]2
ZI C(x-4)"-(1-B)
Cmle -y —a-B)y+1]

Yin = Vi = _[:M \/1

dx+ L.

................................................ (95)
Now substitute Eq. 89 in 95 yields:
JI=B; c92.  plsin’g
yi+ - yl L + l d¢
1 '[ piAll—p}sin® ¢
J~¢2+1 plsin’ ¢ i
11C /29 J1-plsin® ¢
......... (96)

=L +L sz

dg - Ll 1= p?sin ¢d¢]

: / 2
l—pi2 sin? pdp=—-L — FE(pi7¢2i+l) - E(p;,91,)

1- p}sin’

Where the function E is the elliptic integral of the second kind.
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APPENDIX E

Other End Conditions:

End Condition #1: This condition has a pin at bottom end and rotational fixed at the top end but

free to translate at the top as in Fig. 9.

Fig. 9 Pin — Rotational Fixed Column

Thus the moment Qy at the tip of the column makes L4 =0

Nowat y=y,=0 and x=1
dx

@ y=x=0

f#(L) =0 since the moment at the bottom is zero or Eq. 21 becomes:
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Mn—l 1 n—1 B B
L= {ZP_/(L xj>+Q_,}—o

n—1 E]nfl J=0
or
n—1
Q)+ P (L-x)+ D P(L=x)+0,=0 i (97)
Jj=1
or

n—1

0y =R (L=x)~ 2 (P,(L-x)+0))

Let

Then from Eq. 49

1 n-1
AO:%:—{—P(L—xo)—Z[P(L—xjHQj]} .......................................... (99)
R, R, j1
Thus & = 0 — fromEq.83 C,(4,)’ =-B,
dx @y=x=0

And Eq. 24 does not apply. So rewriting Eq. 23 using Eq. 83 to

Ci—l ('xi - Ai—1)2 +B,, = Ci ('xi - Ai)2 + B,
O (100)
Bi = _Ci (xi - Az‘)z + Ci—l (xi - Ai—1)2 + Bi—l

Therefore by substituting 4;, A;.1, Biiin Eq. 99 then B, is found and ¢2,,,, ¢1, and p, are

found from Eq. 88 and Eq. 89 and the problem is solved using the elliptical integral.

Note: Eq. 56 and 57 can be written as:

1 ¢2z+l d¢
W, (x)=— L e (101)
\/2Ci '[’“' \/1 — plsin® ¢
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X=X

1
\/1—[C(x 4y +B[|

B .
+—"(x,, — X
2B( i+1 1)

m m 1

al//i(xi): Ox -4, —(x- A)
Ox Ox 2B

1.3 (2k ) l ﬂ X ~ , o
+k§ 2-4.6---2k [2“2} B, I (o= 4)? + B, ] ax

X=Xi41

1

1+ cos’ ¢+ B, sin )

4B P \/TJ‘ sin ¢[1 p} sin ¢]

ox
| A 4) } dp
L%cm BTN N ey

.................................................................. (102)
End Condition #2 Same as condition #1 except fixed at x = L as in Fig 10.
. . dy .
Using Eq. 93 ati=n, x,=L > —=0 yields:
dx @x-L
Coi(L=A )+ B, =0 e (103)
For f,(L) = 0 since the total moment at the bottom is zero implies
M 1 n-1
L)y=—="- P(L—x;)+ =
fu(L) EIH “E {z (L-x,)+0, Q}
or
n—1
Q)+ P (L=x)+ D P(L=x)+0,-0,=0 it (104)
Jj=1
or

0, =-F(L-x)-2(P,(L-x)+0,)+0,
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B,

Fig. 10 Fixed — Rotational Fixed Column

Thus the procedure is to pick O, and find Q from Eq. 97 and use procedure in condition #1

above to solve for y; for given L; and find all B; then ¢l @2, and p, are from Eq. 82 and

i+l
Eq. 83 and check if Eq. 96 is satisfied if not update O, and the problem is solved using the

elliptical integral.

End Condition #3 Pined both ends as in Fig 11.

Subdividing the column into two parts Part A and Part B at point E at line a — @ where the slope

% =0 in which it is to be found. Separate the loads of Part A and Part B and solve for yga for
X

Part A using a straight cantilever column fixed at point E. Then solve Part B using end condition
#1 (pin at bottom end and rotational fixed at the top end but free to translate at the top.) and find
vos - Check and see if yos = yoB . If yoa not equal to yos then move point E at line a — a up if yop >

vop or down if ypa < yop until point E is found.
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Fig 11 — Pined both ends.

End Condition #4 Fixed both ends.

This condition is similar to end condition #3 where Part A and B are as condition #2.
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