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Abstract 

Variational method is used to determine active and passive forces for a smooth wall with 

a cohesionless and cohesive back fill. The resulting slip surface shows that the extremum 

of the force occurs when the slip surface is the Coulomb line for a level backfill. The 

analysis shows that to achieve the Coulomb line the internal shear in the slices must be 

zero. For a sloped backfill with cohesion the resulting slip surface is not a line. Adding 

internal shear in the slices for the passive condition with a sloped backfill with a 

cohesiveless material is examined and compared with log-spiral method. For special 

boundary conditions, where the slip surface cannot be a line, the forces, the slip surface, 

the pressure on the wall and the location of the resultant on the wall are obtained for 

active and passive conditions. The method is adequate and will always give the derived 

forces and slip surfaces. 

 

Introduction 

The problem of active and passive earth pressure for a smooth wall has been solved by 

Coulomb theory (1776) [4], Rankine theory (1857) [8], and log-spiral theory after 

Terzaghi (1941 & 1943) [11,12]. These theories are presented in most soil mechanics’ 
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texts [12,13]. Each of these methods involves assuming a line slip surface as an 

approximation of a more complex surface as observed in both model tests and field 

observations. The reason in the differences between these slip surface methods and the 

laboratory is in the laboratory the observed slip surface is that of a slope stability problem 

and not of a wall pressure problem. In this paper, a more general solution to the problem 

is developed using variational methods using slices. In variational method, a general form 

of failure surface is derived, and then "varied" until the extreme condition of pressure on 

a wall is found. In a similar approach, variational method has been used to find the factor 

of safety in slope stability: Baker and Garber (1978) [1] and numerical methods by 

Leshechinsky (1990) [6]. The pressure discussed in this paper is for homogenous soil for 

a smooth wall. It can be readily extended to multilayer soil. However, further work is 

required. The limitation of the variational method is that it assumes a continuous function 

for the slip surface. This can be a problem for a heterogynous material as seen in Fig. 1. 

The method fails and  

 
FIG. 1 - Heterogynous Material with Slip Surfaces 

 

Slip Surfaces 
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revisions are needed, possibly piecewise functions are needed. Note: piesewise continous 

function will be needed for multilayer homogenous soil. The general methodology has 

been classically to find the extremum for the earth pressure by finding a slip surface 

where a potentially soil failure would occur for extremum pressure. Thus, the design has 

captured the worst condition for the force on the wall. Historically, this method has been 

used satisfactorily provided the material properties have been reached. It is impossible in 

practice to test for all the soil friction values and cohesion through borings logs, thus 

engineering judgment has to be made for these values. In order to use the method 

proposed properly and interpret the results, care has to be taken in selecting the material 

properties. 

 

With the variational method, [15], one selects arbitrary admissible slip surfaces and 

determines the forces acting on the boundary of the earth mass. The definitive slip surface 

is one that yields an extremum value for the earth pressure. In this paper, variational 

methods are used to determine the slip surface, based on some practical assumptions. The 

solution shows that the Coulomb wedge is a particular case of the general solution 

presented here. It is believed that the application of variational methods to earth pressure 

problems is a practical advancement to understanding of retaining wall problems. Five 

different analyses will be done to avoid giving one cumbersome general equation and 

give a closed form solution for the special cases. In analysis 1 a closed form solution is 

reached, it is assumed a level backfill for cohesive and cohesiveless material, which is 
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useful for most site conditions. Analysis 2 is for a sloped backfill and slanted wall for 

cohesiveless material, which does not include cohesion to give a closed form solution. 

Analysis 3 is repeating analysis 2 with cohesion where the pressure is not given in a 

closed form but can be obtained numerically. In analysis 4 a closed form solution is 

reached for passive earth pressure condition for sloped backfill with cohesiveless material 

to include internal vertical shear from the slope backfill. Analysis 5 is a repeat of Analysis 

4 with cohesion.   

 

Analysis 1 

In this analysis, it is desired not to restrict the slip surface to a line and to find a function 

y(x) that would extremize E, as shown in Fig. 2(a). It is assumed that the wall moves  
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FIG. 2 – Slip Surface for Level Backfill 
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sufficiently such that the friction between the wedges equal 0. Thus, Tn+1 = Tn , as in Fig. 

2(b), for all the wedges. Since the wall has no friction, Ti = 0 for all the wedges. This 

assumption is similar to the assumptions used in stability analysis by the method of slices 

(Bishop (1955) [2]) and in analysis of passive earth pressures for a wall with friction by 

Shields and Tolunay (1973) [10]. If  the Ti 's are to be included in the derivations, K0 can 

be determined using incipient shear method. Thus, each slice is in equilibrium, so the 

overturning moment remains in balance and not of concern. 

 

Thus, the force dE can be written as 

 

[ ])tan(sincos)tan(1 φαααφα −+−−==−+ cdsdWdEEE nn ................................ (1) 

 

Replacing dW by γydx and ds by dx/cosα and integrating yields 
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Eq. 5 can written as: 
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It is necessary to find the extremum of E in Eq. 6 for the boundary condition: 

 

       (i) Given (0, y0) and (x0, y1), find the slip surface that passes through these points. 

       (ii) Given (0, y0) and P0 located somewhere on a given line x = x0 or a line y = y1, 

             find the slip surface. 

 

Therefore Euler’s equation [15] applies where 
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=y
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where ℜ does not involve x explicitly, and h0 is a constant. 

Substituting in Eq. 8 yields 
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Eq. 9 reduces to the following: 

 

( )( ) ( )2

0
2 tan1tan1tan2 φφγφ yhcyyy ′−=+−′+′   ...................................................... (10) 

or 

( )( ) ( )2
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Note Eq. 10 is a parabola in ′y . From Eq. 11: h y0 0 1≥ ′ ≤ − −  for tan / cosφ φ  or 

′ ≥ − +y tan / cosφ φ1 , and h y0 0 1 1< − − ≤ ′ ≤ − +    for  tan / cos tan / cosφ φ φ φ . From 

trigonometric identity 
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From Eq. 11 and Eq. 12, ( )h0 0 4 2 4 2≥ ≥ + ≤ − −  for    or α π φ α π φ/ / / / , and 

( )h0 0 4 2 4 2< − − ≤ ≤ +  for  π φ α π φ/ / / / . Taking α to be positive yields the 

following bound on h0 : 

 

2/4/0for    0  and ,  2/4/for    0 00 φπαφπα +≤≤<+≥≥ hh ......Active............. (13) 
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For the passive condition, replacing φ by −φ  and c by –c in Eq. 11 yields 

 

2/4/0for    0  and ,  2/4/for    0 00 φπαφπα −≤≤<−≥≥ hh ......Passive............ (14) 

 

The slip surface can be derived by rewriting Eq. 10 to 

 

( ) ( ) ( ) 0tan2tan 11
22
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+
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If h = 0 in Eq. 16, then ′x  becomes a constant and y(x) must follow the Coulomb wedge. 

Since ′ = −x cotα  and α π φ= +/ /4 2  for a Coulomb wedge it follows from Eq. 12 that 

 

( ) ( )′ = − + = − − = −x cot / / tan / / tan / cosπ φ π φ φ φ4 2 4 2 1  ................................. (17) 
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In order to satisfy Eq. 17, the plus sign in Eq. 16 can be dropped, and the equations 

become 

h
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For the passive condition, replacing φ by −φ  and c by –c 
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Integrating Eq. 18a yields the slip surface equation 
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where k is the constant of integration. Substituting the point at x = 0  y = y0 yields 
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and the active slip surface, Eq. 19, becomes 
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For passive it becomes 
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To find the active force E, Eq. 5 can be rewritten in terms of ′ ′x y instead of ,  
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dy dx instead of , and the interval [ ]  instead of  [ ] ,  where y x y0 0 10 0, ,  is taken to be 0 in 

Fig. 2(a). Thus 
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Substituting Eq. 18a in Eq. 22 and rearranging yields 
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Thus the mathematical pressure q y
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                                                                                   ..................................................... (24) 

 

It is desired to investigate the extremum of q(y) with respect to h, thus 
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Thus the extremum occurs at the Coulomb wedge for passive and active. Hence it has 
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                                                                              ……………………………............ (26b) 

 

Note: that the right hand term involving h in Eqs. 26a-b has a minimum at h=0. It is 

desired to show that for 
φγ tan

c
h −<  the slip surface does not reach the top of ground at 

the point (x0,0). It has been shown in Eqs. 13 and 14 that if h0 < 0 (or h < 0), then 

α π φ α π φ≤ + ≤ −/ / / /4 2 4 2  for active,  and   for passive. Thus a slip surface with 

φγ tan

c
h −<  is further than the triangle Coulomb wedge as shown in Fig. 3.  

 

x0

y1

Coulomb
Wedge

45+φ/2

Slip Surface for h < 0

Slip Surface

 
FIG 3 – Slip Surface for Level Backfill with Constraint h < 0 
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Furthermore, Eq. 18a-b shows that ′ = ∞ ′ =x y  or  0 at some value 
φγ tan

c
hy −−= . 

Since 
φγ tan

c
h −< , the y value must be positive and cannot be 0. Thus y is below 

ground. Also, for 
φγ tan

c
hy −−<  the term h

c
y ++

φγ tan
 is not defined in Eq. 18a-b. 

Thus for 
φγ tan

c
h −<  Eqs. 26a-b are not applicable. 

 

Eq. 22 must be integrated from y0 to y1 instead of  y0 to 0, where the point (x0, y1) is a 

point underground. This integration yields 
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                                                 ..................................Passive.................................. (27b) 

Thus it can be easily concluded that  h = 0 is the only minimum of the h terms in Eqs. 

26a-b. Hence E has a maximum at h = 0 for active and a minimum at h = 0 for passive. 

This shows that the Coulomb wedge gives the extremum for E as it has been shown in 

Eq. 25. 

 

Condition (i) 

It is seen that Eqs. 18a-b , 21a-b , 26a-b , and 27a-b are useful for condition (i) when the 

slip surface must pass through a point and physically is not represented by the Coulomb 

wedge. The following examples have this situation: 

 

Example 1 Consider Fig. 4, where the passive pressure is to be calculated for a slip  
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x0

y0

y2

45−φ/2

(0,y0)

(x0,0)

Slip Surface of Eq. 31-b

Basement Wall

 
FIG. 4 – Slip Surface for Passive with and Existing Basement Constrained Example 1   

 

surface that is controlled by the presence of a basement wall. The Coulomb wedge cannot 

physically go through the wall. Thus the general slip surface is applicable. 

In this situation y0, x0 are known. Thus, substituting their values in Eq. 21b yields 

x y y hy
h h

y hy y h
0 0 0

2
0

0
2

0 0

1

2 2 2
= + + +

+ + +











tan

cos
lnφ

φ
 ................................ (28) 

The value h can be obtained numerically from Eq. 28, and E can be calculated from Eq. 

26b. Thus, if γ = 120 pcf (1.93 g/cm3), φ = 30 degrees, c = 0, y0 = 10 ft (3.05 m), and x0 = 

10 ft (3.05 m), then from Eq. 28, h = 27.3318 ft (8.3307 m). Taking λ = h y/ 0  = 2.73321 

in Eq. 26b gives E = 21,455 plf (31.97 g/m). If a straight line is used from (0, y0) to (x0, 

0), then α = 45 degrees. Evaluating the Coulomb wedge y = y0 = 10 ft (3.05 m) gives E = 

22,392 plf (33.37 g/m). Note that Eq. 26b gives the extremum with 4.4% difference over 

the straight line. Note: If treated as the full wedge with Kp = 3 where  y = 5.77ft (1.76 m) 

is triangular pressure and 4.33 ft (1.29 m) is pressure with surcharge then E  = 18,000 pfl 

(26.82 g/m). In this situation it is assumed the wall is rigid thus the slip surface is a curve 

and E = 21,455 plf (31.97 g/m). 
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Example 2  Consider Fig. 5, where a slip surface passing through (0, y0) to (x0, y1) must  

 

y0=20

x0=5

y1=5

line 2
line 1

71.565 deg

(x0,y1)

(0,y0)  
 

FIG. 5 – Slip Surface for Active with and Existing Basement Constrained Example 2   

 

be analyzed for an active condition. γ = 120 pcf (1.93 g/cm3), and φ = 30 degrees, c = 0. 

From Eq. 21a substituting  y0 = 20 ft (6.1 m), x = x0 = 5 ft (1.52 m), y = y1 = 5 ft (1.52 m), 

and calculating numerically h = 6.88284 ft (2.0979 m). Substituting in Eq. 27a gives E = 

6,740 plf (10.05 g/m). If comparing with a straight line, line 1,  from (0, y0) to (x0, y1), it 

gives E = 6,651 plf (9.91 g/m), where the Coulomb wedge was used with W = 

.5(5+20)(5)(120)=7,500 plf (11.18 g/m), and α = 71.565 degrees. Thus, a 1.3% difference 

over the derived is obtained. To find Emax further analysis must be done for line 2 and the 

result must be compared with line 1. 

 

Example 3  In the case of stability analysis for tieback wall, as shown in Fig. 6(a) , the  
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ξ

 
 

FIG. 6 - Slip Surface to Determine Safety Factor of a one Tieback Wall  
 

 

slip surface is shown to pass through the point in the middle of the anchor, see reference 

[3,7,9,16]. In this case the stability factor Tmax/Tdesign is to be calculated as in reference 

[16]. From the force diagram, Fig. 6(b), the summation of horizontal and vertical forces 

are 

 

p T Q Pa a+ + =cos sinξ ψ  ........................................................................................ (29) 

 

T Q Wsin cosξ ψ+ =  ................................................................................................ (30) 

 

Substituting Q from Eq. 30 in Eq. 29 yields 
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T
P W pa a=

− −

−

tan

cos sin tan

ψ
ξ ξ ψ

 ............................................................................................... (31) 

 

From Eq. 31 T = Tmax can be calculated where W Etanψ =  of Eq. 27a, and the constant h 

can be found from Eq. 21a for a given (x0, y1). W can be calculated numerically from 

integrating the right hand side of Eq. 21a from y1 to y0  

W y x f y dy
y

y

= + ∫γ γ1 0
1

0

( )  ........................................................................................... (32) 

 

where f(y) is the right hand side of Eq. 21a. Thus, ψ =






−tan 1 E

W
, 

p ya = −








1

2 4 21
2 2γ

π φ
tan  , and P ya = −









1

2 4 20
2 2γ

π φ
tan . 

Taking for example y0 = 20 ft (6.1 m), γ = 120 pcf (1.93 g/cm3), φ = 30 degrees, c = 0, ξ = 

20 degrees, Tdesign = 3,872 plf (5.77 g/m), Pa = .333(120)(20)(20)/2 = 8,000 plf (11.92 

g/m), y2 = 6 ft (1.83 m), x0 = 15 ft (4.57 m), y1 = 6 + 15 tan(20) = 11.46 ft (3.49 m), pa = 

.333(120)(11.46)(11.46)/2 = 2,626 plf (3.91 g/m), and substituting  x = x0 = 15 ft (4.57 

m), and y = y1 = 11.46 ft (3.49 m) in Eq. 21a gives h = -10.8507 ft (-3.3073 m). 

Substituting in Eq. 27a gives E = 154.4 plf (0.23 g/m). Integrating Eq. 32 numerically 

gives W = 26,802 plf (39.94 g/m). Thus, ψ = 0.3301 degrees, and T in Eq. 31 becomes 

5,566 plf (8.3 g/m). The stability factor Tmax/Tdesign = 5,566/3,872 = 1.438. If using a 

straight line method, where ψ in Eq. 31 becomes α−φ, α = 29.66 degrees, and W = 

0.5γ(y0+y1)x0 = 28,314 plf (42.2 g/m), then T = 5,885 plf (8.77 g/m), and the stability 
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factor = 5,885/3,872 = 1.52. This gives 6% difference in the safety factor over the derived 

method. 

 

Condition (ii) 

For condition (ii), where the slip surface must pass through a line at x0 or at y1 below x0 , 

it yields 
∂
∂
ℜ

′
=

=
y

x x0

0, or from Eq. 7 

( ) ( )

( )
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tan1
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0cot
tan1sin
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tan1cos
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2

1

2222
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−
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φφ

φ
φγ

φ
φφ

φ
φφ

γ

c

y

c
y
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c
y

c
y

y

....................................... (33) 

 

Substituting Eq. 18a with y1 instead of y in Eq. 33 where ′ = ′x y1 /  yields 

 

0
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
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Thus  
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At ∞→y&   0→x&  then 

 

φγ
φ

tan
tan 2

2

c
hy −=    ...................only active ........................................................ (35a) 

 

Substitute Eq. 35 in Eq. 21a and 21b for a given x0 and find h. If y1 is negative then y1 = 0 

and h can be calculated from Eq. 21a and 21b for a given x0. If y1 is above y2 then y2 

controls and find h from Eq. 21a and 21b. Note: y1 is zero only if h = 0 and c = 0. Thus, it 

can be obtained from Eq. 34a is the following problem: Consider that the slip surface 

must pass through a line at x = x0 and have y h1
2= tan φ  below x0 and c = 0. This makes 

′ = ′ = ∞x y0  or   in Eq. 18a. This condition can occur in the real world as seen in 

example 4 below, and  E can be obtained from Eq. 27a. Note y h1
2= tan φ  with c = 0 is 

invalid for passive pressure, since Eq. 44b is not zero. For passive Eq. 45 is not valid 

when replacing φ by −φ  and c by –c and the slip surface must pass through the point (x0, 

0) when there is a rigid obstacle otherwise it can be analysed as a surcharge problem as 

seen  in example 1.  

For 
φγ tan

1

c
hy −−= , h < 0 and ′ = ′ = ∞y x0  or   in Eq. 18a-b. This situation can happen 

if the slip surface must pass through a line x = x0 where the slope must be zero at y1 below 

x0 . Fig. 7 shows such an example of an passive condition with c = 0, where the concrete  
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FIG. 7 – Slip Surface for Passive with Mat Slab Constrained Special Condition 
 

 

mat shown on top can sustain itself. Thus at the line x = x0 , ′ =y 0 due to deformation. In 

this example the weight of the slab is taken to be the same as the weight of soil. 

Substituting c = 0, h = -y1 and y = y1 in Eq. 21b yields 
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and the passive force E can be obtained from Eq. 27b: 
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                      ............................................................................................................. (37) 

 

Example 4 Consider Fig. 8, where the active pressure is to be calculated for a slip surface  
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FIG. 8 – Slip Surface for Active with a Neighboring Structure Example 4 
 

 

that avoids the basement wall with c = 0. This problem is also similar to finding the 

active pressure for a wall adjacent to rocks. 

                               

From Eq. 35 

 

h y= 1
2cot φ  .............................................................................................................. (38) 

 

Substituting Eq. 38 in Eq. 21a yields 
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                              ..................................................................................................... (39) 

 

where z = y1/y0 . Thus, for a given x0 and y0 , z can be calculated numerically from Eq. 39. 

Taking  h y zy= =1
2

0
2cot cotφ φ  , it can be substituted in Eq. 27a to give the active force. 

Taking for example  y0 = 20 ft (6.1 m), γ = 120 pcf (1.92 g/cm3), φ = 30 degrees, c = 0,  x0 

= 5 ft (1.52 m),  gives  z = 0.12475,  y1 = 2.495 ft (76.05 cm), and  h = 7.484 ft (228.14 

cm). Substituting in Eq. 27a gives E = 6,777 plf (10.1 g/m). If a line is taken from (0, y0) 

to (x0, 0), using the Coulomb wedge, it gives E = 6,530 plf (9.73 g/m), a 3.8% difference 

over the derived. Now if a Coulomb method is used with y3 as shown in Fig. 8, the wedge 

can be taken as the Coulomb line with a uniform surcharge γy3 . This gives E = 5,428 plf 

(8.09 g/m), where the overburden  y3 = 11.34 ft (3.46 m). Thus, the Coulomb wedge does 

not give Emax and a difference of 25% is obtained over the derived.  

For condition (ii), where the slip surface must pass through a line y = y1, ℜ in Eq. 7 can 

be rewritten as  









′−

′+
−′−′

′−

′+
−=ℜ

x

x
xcxy

x

x

φ
φ

φ
φ

γ
tan

tan1

tan

tan1
 .................................................................. (40) 

 

If the Euler Eq. is used with Eq. 40, the same slip surface will be obtained. Thus, for a 

slip surface passing through a line y = y1, it yields 
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∂
∂
ℜ

′
=

=x
y y1

0 ................................................................................................................. (41) 

 

Executing Eq. 41 on Eq. 40 yields 
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1tan2
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′−

−′−′
−

′−

−′−′

x

xxc

x

xx
y

φ
φ

φ
φφ

γ .............................................. (42) 

Thus, 

′ = ± + = ±=x y y1

2 1
1

tan tan tan
cos

φ φ
φ

 .................................................................. (43) 

 

This forces h in Eq. 16 to be zero, or the Coulomb wedge is the solution for this 

condition. This situation is similar to having a uniform surcharge at the line y = y1. This 

confirms that the Coulomb wedge is the proper slip surface as described in Eq. 25 and in 

the extremum of Eq. 26.  

 

Analysis 2 

For a sloped smooth wall with a sloped back fill with c = 0 (see Fig. 9(a)) the slip surface  
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FIG. 9 - Slip Surface with a Sloped Backfill and Slanted Wall 
 

 

for an active condition can be derived similarly. It is assumed that Ti = Ti+1 with T0 = 0. 

 

From the force diagram, Fig. 9(b), it yields 

 

( )[ ]dE dW= − +cos tan sinθ α φ θ  ............................................................................. (44) 

 

Thus, 

( )[ ] ( )[ ]E y x dx
x

= − + + −∫γ θ α φ θ β θcos tan sin tan
0

0

 ............................................. (45) 

where ( )[ ]dW y x dx= + −tan β θ . Eq. 45 can be rewritten as 
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E k
u

u
udx

x

= −
′ +
− ′









∫γ θ

ζ
φ

θ4 0 1
0

sin
tan

tan
cos    .................................................................... (46) 

 

where ( )k4 1= + −tan tanφ β θ , ζ φ β θ= − + ,  ( )[ ]u y x k= + −tan /β θ 4 , and 

[ ]′ = ′ + −u y ktan( ) /β θ 4 . From variational method, and repeating the same analysis as in 

analysis 1, it yields 

 

dx

du
k

u

u h
= −

+
tanφ 1  ............................................................................................... (47) 

 

and the slip surface 

khuhuu
h

huukux +






 +++−+−= 22ln
2

tan 22
1φ  ........................................ (48) 

 

where ( )[ ] ( )k1 1= + −tan tan tan / tan tanφ ζ φ ζ θ , and k is the constant of integration. 

Substituting Eq. 47 in Eq. 46 and rewriting yields 

 

E k k k
u h

u hu
udu

u

u

= −
+

+









∫γ 4 3 2 2

2

1

0

 .............................................................................. (49) 

 

where  

u y k0 0 4= / , 

( )[ ]u y x k1 1 0 4= + −tan /β θ , 
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( )( )k2 1= + −cos tan tan tan tan tanθ φ ζ φ ζ θ , and 

( )k3 1 2= − + +sin tan cos tan tanθ φ θ ζ φ . 

 

Note E is maximum at h = 0, giving the slip surface to be the Coulomb wedge. Thus the 

application of β and θ is the same as in Coulomb. Validation of the solution at h = 0 can 

be checked numerically against US Army Corps Publication EM 1110-2-2502  Equation 

3-13 and 3-19 as a different mathematical form of the same solution. Terzaghi (1943) 

[12], Rosenfarb and Chen ( 1972) [9] show for high β and θ = 0 on a smooth wall, the 

slip surface is not a line and produces lower Kp values. However, for Ka values the 

differences were negligible. This means that the Ti's due to the ramp are not zero in 

passive condition. This is possible for a high β > 0 influencing the slice contact shear at 

the ramp. Equations derived for these conditions are shown in analyses 4 and 5 below. 

Evaluating E in Eq. 49 yields 

 

 

E k k
u u
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
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h u hu u h
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2
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2
0
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1
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2 2
ln  

                           ........................................................................................................ (50) 

 

For passive replace φ  by φ−  and E becomes: 
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                           ........................................................................................................ (51) 

 

For condition (i) described before, the constant h and k can be obtained by substituting 

the two end points (0, u0) and (x0, u1) in the Eq. 48. For condition (ii): It is of merit to 

obtain the general solution, for the undetermined points, for a given curve and not just for 

a line. Some practical applications would be a buried vault, tunnel, tank, utility, etc. , that 

would interfere with the coulomb line. Suppose the given curve is g0(x, y) = 0. By 

substituting for y k u x= − −4 tan( )β θ   in g0(x, y), the new function will be g(x, u) = 0. If 

the end point  (x0, u1) is obtained, then y1 can be obtained from y k u x1 4 1 0= − −tan( )β θ . 

From reference [15] the following condition must be satisfied for condition (ii): 

 

[ ]
∂
∂

∂
∂

∂
∂

∂
∂

ℜ

′
−







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=
=

= =

u

g

u

g

x
u

g

u
x x

u u

x x

x x u u

0

1

0

0 1

1

0 ................................................................................ (52) 

 

where ℜ is the integrand of Eq. 46. Doing the mathematics of Eq. 52, and solving for ′u1  

and using a relation for h from Eq. 47, yields 
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φ
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 .................................................. (53) 

 

 

where 

R u

g x u

x

g x u

u

x x

u u

( )

( , )

( , )1
0

1

=
=

=

∂
∂

∂
∂

 ................................................................................................. (54) 

 

R(u1) is a function of  u1 alone is because x0 can be determined from g(x0, u1) = 0. Now, k 

in Eq. 48 is determined from the point (0, u0). Thus, substituting Eq. 52 in Eq. 48 and 

replacing (x, y) by (x0, u1) gives an equation with u1 as the only unknown. Hence, u1 can 

be determined (numerically). 

The following are two important functions: 

 

A line: [ ]y ax b k u a x b g x u= +  → − − + − = =    
change to

4 0tan( ) ( , )β θ  

                              
from Eq 63

   → = −
− +

R u
a

k
( )

tan( )
1

4

β θ
 .......................................... (55) 

 

A circle: ( ) ( ) ( ) ( tan( ) )x x y y r x x k u x y rc c c c− + − =  → − + − − − − =2 2 2 2
4

2 2 0   
to β θ  
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[ ]

to
  → =

−

− − −
−

−
R u

x x

k k u x y k

c

c

( )
tan( )

tan( )
1

0

4 4 1 0 4β θ

β θ
 ................ (56) 

where x0 can be determined from the quadratic equation in g(x0, u1) = 0. 

 

The following equations are the results for the condition where k4 = 0: 

Eq. 45 yields: 

 

E
k

u
udx

x
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′







∫γ θ θ φsin cos cot 5

0

0

 ......................................................................... (57) 
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( )E
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u u k h
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= − −γ γ6
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2
5

2 0

18
ln  ............................................................................ (61) 

 

where ( )u y x= + −tan β θ , ′ = ′ + −u y tan( )β θ , u y0 0= , ( )u y x1 1 0= + −tan β θ , 

k5
2= cos / sinθ φ , ( )k6 = −cos / sinθ φ φ , and k is the constant of integration. For passive 

replace φ  by φ− . For Condition (ii): 

 

h
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32 

 

where R(u1) is of Eq. 54. To obtain the solution for a line or a circle, set k4 = 1 in Eqs. 55 

and 56, and u1 can be determined numerically from Eq. 58. 

 

For the passive condition replace φ by −φ in the above equations, starting with Eq. 44.  

It is noteworthy that if the axis in Fig. 9(a) is rotated by −(β−θ), the new axis will be 

( ) ( )x y x= − − + −sin cosβ θ β θ , ( ) ( )y y x= − + −cos sinβ θ β θ , and 

( ) ( )x x y= − + −cos sinβ θ β θ . If substituting for the new axis in the slip surface of Eq. 

48, the resulting slip surface is similar to what has been obtained in Eq. 19, only with 

different constant values. 

 

Analysis 3 

When repeating analysis 2 with cohesion the Eq. 44 become: 

 

[ ] [ ]dscdWdE )tan(sincossin)tan(cos φαααθφαθ −+−+−= ………………… (63) 

 

Or 
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                                                                              ………………………………….. (64) 

 

And the variational equation becomes: 
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0)(2)( 6352
2

41 =+++−+ auauauauaua &&  …………………………..…………… (65) 

 

Where: 
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Thus the maximum E occurs at 
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This clearly Eq. 67 will not produce a line slip surface for c not equal zero and h = 0 also 

it can be shown that h cannot be zero for maximum or minimum E. Validation of the 

solution at h = 0 can be checked numerically against US Army Corps Publication EM 

1110-2-2502  Equation 3-25 as a different mathematical form of the same solution. 
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Analysis 4 

For a sloped smooth wall with a sloped back fill with c = 0 (as in Fig. 9(a)) the slip 

surface for a passive condition can be derived similarly for shear due to the ramp. It is 

assumed that  

xdxK
x

K
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d
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1 2
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Where the shear is assumed to occur from an average at rest pressure 

)sin1(06.10 φ−=K on the ramp subtracting from the weight dW. From the force yields 

 

( )[ ]θφαθ sintancos ++= dWdE  ............................................................................. (69) 

 

Thus, 
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where φtan14 Ak −= , 



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

 −
−−−−= − φ

θ
θβ

θβφζ tan
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)(tan
)tan(tan

2

0
1 K ,  

[ ] 4/ kAxyu += , and [ ] 4/ kAyu +′=′ . From variational method, and repeating the same 

analysis as in analysis 1, it yields 

                            

hu
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and the slip surface 
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1φ  ........................................ (73) 

 

where ( )[ ] ( )ζθφζφ tantan/tantantan11 −−=k , and k is the constant of integration. 

Substituting Eq. 72 in Eq. 71 and rewriting yields 
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where  

u y k0 0 4= / , 

[ ] 4011 / kAxyu += , 

( )( )ζθφζφθ tantantantan1tancos2 −−=k , and 

( )φζθφθ tantan21costansin3 −+=k . 
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For E Eq. 51 applies. 

 

Note: E is minimum at h = 0, giving the slip surface to be a line. Note: as the slip surface 

approach the top surface the shear of Eq. 68 at y < 0 can be reduced. If  h = 0 is used in 

Eq. 51 it yields: 

  

2

0

4

2

2

0

4

3

2
y

k

ky

k

k
E γγ +=  ………………………………………………………. (75) 

In here 
4

0
0

k

y
u = and 01 =u , comparing with log-spiral in Table 1 at 0>= βφ and 

0=θ yields: 

Table 1 shows a maximum %5± difference between log-spiral and Eq. 75. 

 

TABLE 1 – Passive Pressure Coefficient Kp for Sloped Backfill 0>= βφ and 0=θ  

φ  (degrees) Kp (Coluomb) Kp (log-spiral) Kp (Eq. 75) 

10 1.704 1.642 1.697 

15 2.321 2.170 2.284 

20 3.312 3.119 3.172 

25 5.074 4.822 4.600 

30 8.743 7.472 7.107 

35 18.82 12.67 12.14 

40 70.92 23.58 24.84 
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Analysis 5 

Analysis 5 can be done similar to analysis 4. Where the ramp shear is  
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Or 

dxcxdxKTi )tan( tan
cos

)(tan 2

0 θβφ
θ

θβ
−−

−
−= …………. Passive ………… (77) 

 

Surcharge 

If there is a uniform surcharge q on top of the wall, it can be replaced by soil such that the 

soil thickness above y is y qs = / γ  . Thus y becomes y ys+  in the integral equations. By 

making a change of variable y y yt s= +  , the results will be similar and the equations 

easily modifiable. 

  

 Wall Pressure 

The location of the Coulomb force is at (2/3)y0 from the top of wall for triangular 

pressure. This is a reasonable assumption since Ka is independent of y0, yielding dE/dy0 = 

γKay0. However, this method is not applicable for examples 1, 2 and 3. A different 

approach is necessary in order to find the pressure. This can be done by moving down the 

wall from the top at incremental distances y + ∆y, and find the potential slip surfaces, and 

forces. Thus, a table of Ej and yj can be created. The stresses at a distance yj can be taken 

as (Ej − Ej-1) / (yj − yj-1). This will give the same result as in a Coulomb condition. For 
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example 1, 2, and 3, this method will take into account the Coulomb conditions at the top 

of the wall. One needs to examine the wall boundaries and movements before using the 

method. The following considerations need to be examined: (1) The potential slip 

surfaces above y0 assumes the friction is almost fully mobilized. (2) The friction on the 

wall may vary. It may not be constant throughout. (3) No abrupt changes in deflection 

(the wall is continuous). In assumption (1), the friction on the bottom of the slice is φ φ'≤ . 

However, if the wall movements indicate the entire wedge is either active or passive, then 

φ' ≅ φ. φ' ≠ φ  because the soil above and below yj are moving together resulting in the 

apparent slip surface on the bottom of the wall. However, they must be close. In 

consideration (2), even on a Coulomb wedge, if the friction of the wall varies it will 

produce non-linear pressure. 

 

Irregular Backfill  

If the wall does not have a level or sloped backfill but an irregular backfill, the analysis 

will require a computer program algorithm. One possibility is to use Fourier Series 

converted to a Taylor Series on the top surface and proceed to solve the Euler equation. 

 

Conclusion 

Variational method has been used to determine active and passive forces for a smooth 

wall with a cohesive and cohesionless soil. The methods are classical, conventional, and 

only practical assumptions were used. The resulting slip surface shows that the extremum 

of the force for a level backfill occurs when the slip surface is the Coulomb line for 

cohesion and cohesionless soil. Additionally, in order to have the Coulomb failure 
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surface, the internal shear in the Bishop slices is required to be zero. For a sloped backfill 

the resulting slip surface shows that the extremum of the force occurs when the slip 

surface is a curve for cohesion soil and also when the internal shear in the Bishop slices is 

not zero. When adding the internal shear due to a sloped backfill for a cohesiveless 

material on a vertical wall the passive pressure is in good agreement with log spiral 

method; however, the slip surface is still a line.  

 

For special cases where the slip surface is dictated by physical conditions and must pass 

through a point, a line or a curve, the forces and the slip surface can be obtained for both 

active and passive conditions. Also, a method of calculating the pressures on the wall is 

given. It can be seen that this method is adequate and will always give the derived slip 

surface. It has been noted in the examples given that the derived slip surface has not 

produced a significant difference over using a straight line. Although these differences are 

of desirable accuracies, having the correct slip surface is important when considering the 

influence of neighboring structures, activities, or discontinuities. If the engineer decides 

to use a conservative pressure by ignoring the neighboring structure and use a slip surface 

such that the neighboring structures do not exist, then the analysis given in this paper 

should guide the engineer on the differences in the pressures and give him the necessary 

comfort factor. 
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Appendix III.- Notation 

             The following symbols are used in this paper: 

 

α = angle of the failure wedge, or of failure a slice, with the horizontal; 

A = constant;  

A = slope of line equation ( y = ax + b ); 

β = angle from the horizontal for ramp of soil on top of wall; 

B = the y-axis intercept of line equation ( y = ax + b ); 

C = cohesion; 

∆y = incremental vertical distance; 

E = horizontal active force on the wall to maintain equilibrium; 

Ei = horizontal active force on a slice to maintain equilibrium;  

Ej = horizontal active force on wall at distance yj;  

φ = angle of internal friction of soil; 

φ' = immobile angle of friction soil; 

f(y) = mathematical function in calculating the weight of soil in the slip surface; 

γ = soil unit weight; 

C = cohesion 

g(x, u) = curve function where the slip surface must pass through in (x, u) coordinates; 

g0(x, y) = curve function where the slip surface must pass through in (x, y) coordinates; 

H = mathematical coefficient in the slip surface equations related to h0; 

h0 = mathematical coefficient in the slip surface equations; 
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I = integer counter; 

J = integer counter; 

K0 = at rest earth pressure coefficient; 

K = constant of integration; 

k1 to k6 = mathematical coefficient for representations slip surface and active force Eq.'s;  

Ka = active earth pressure coefficient; 

Kp = passive earth pressure coefficient; 

λ = dimensionless coefficient; 

N = integer counter; 

Pa = horizontal active force on a tieback wall to maintain equilibrium; 

pa = horizontal active force above center of tieback grout length; 

Q = reactive force on bottom of failure wedge or slice to maintain equilibrium; 

Q = uniform surcharge pressure on top of wall; 

q(y) = mathematical horizontal pressure function; 

ℜ = calculus of variation function of mixed variables representing the integrand; 

R(u1) = a non dimensional function = ( / ) / ( / )∂ ∂ ∂ ∂g x g u u u x x  at   and = =1 0 ; 

R = the radius of a circle; 

θ = angle from the vertical for slant wall; 

T = Tmax; 

Tdesign = design tieback tension force; 

Ti = vertical shearing force on a slice to maintain equilibrium; 

Tmax = maximum tieback tension force to failure; 
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U = new variable of distance as function of x and y; 

u0 = y0; 

u1 = new variable of distance as function of x0 and y1; 

W = vertical force from soil weight; 

ξ = tieback angle from horizontal; 

X = coordinate x-axis; 

x  = rotated coordinate of x-axis; 

x0 = x-coordinate at the end of the slip surface on top of the wall or in the soil; 

xc = the x-coordinate of the center of a circle; 

ψ = directional angle from the vertical for the reactive force Q; 

Y = coordinate y-axis; 

y  = rotated coordinate of  y-axis;  

y0 = height of wall; 

y1 = y-coordinate point on the end of the slip surface in the soil; 

y2 = distance from top of the wall to tieback at face of the wall; 

y3 = distance from top of the wall to Coulomb wedge; 

yc = the y-coordinate of the center of a circle; 

yj = the y + ∆y incremental distance on the wall for active force Ej; 

ys = equivalent soil height to produce surcharge pressure q; 

yt = y + ys; 

ζ = φ − β + θ; and 

Z = dimensionless coefficient. 

 


