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Abstract 

In this paper it is shown that K0 , the at rest earth pressure coefficient, can be related 

theoretically to failure parameters of soil (c and φ). The approach is to use failure 

mechanism that causes the soil to fail while keeping the at rest lateral pressure. 

Variational method is used to derive the real K0. An approximate and a closed form 

derivation are obtained in sand. The approximate solution gives an equation for K0 

identical to the traditional equation by Jáky. The closed form equation shows a slightly 

higher K0 value and gives a better comparison with experiments. The resulting failure 

surface is successfully compared to rigidly reinforced soil walls. Further analysis was 

done to obtain a reasonable approximation of K0 for clay and overconsolidated sand and 

clay. The result shows K0 is not constant with depth due to the cohesion. The tension 

zone for the at rest condition is also obtained. 

 

Introduction and Review 

The ratio of horizontal to vertical stress is expressed by a factor called the coefficient of  

lateral stress or lateral stress ratio and is denoted by the symbol  K:  K= σh/σv , where σh 

is the horizontal stress and σv is the vertical stress. This definition of K is used whether or  
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not the stresses are geostatic. Even when the stresses are static, the value of K can vary  

over a rather wide range depending on whether the ground has been stretched or 

compressed in the horizontal direction by either the forces of nature or the work of man. 

Often the interest is in the magnitude of the horizontal static stress in the special case 

where there has been no lateral strain within the ground. In the special case, the interest is 

the coefficient of lateral stress at rest and uses the symbol K0. 

 

Sedimentary soil is built up by an accumulation of sediments from above. As this build-

up of overburden continues, there is vertical compression of the soil at any given 

elevation because of the increase in vertical gravity stress. As the sedimentation takes 

place, generally over a large lateral area, significant horizontal compression takes place. 

Since soil is capable of sustaining internal shear stresses, the horizontal stress will be less 

than the vertical stress. For a sand deposit formed in this way, K0 will typically have a 

value between 0.4 and 0.5. 

 

On the other hand, there is evidence that the horizontal stress can exceed the vertical stress 

if a soil deposit has been heavily preloaded in the past. In effect, the horizontal stresses 

were "locked-in" when the soil was previously loaded by additional overburden, and did 

not fully disappear when this loading was removed. For this, K0 may reach a value of 3. 

 

When the accumulation of sediments from above causes consolidation without locked-in 

stresses, it is referred to as "normal consolidation". The problem of normally consolidated 
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sand under a widely loaded area has been theoretically investigated by Jáky, (1944, 1948) 

[10,11], and Handy, (1985) [8], yielding 

 

K0 1= − sinφ  .............................................................................................................. (1) 

 

where φ is the angle of internal friction of the soil. The original derivation of Jáky gives a 

more complicated expression that he approximated by K0 0 9= −. sinφ  [10], and later 

simplified it to equation 1[11]. Handy shows that if instead of using a flat arch, he had 

used a catenary, the examination indicates K0 106 1= −. ( sin )φ [8]. He mentioned that 

neither of these derivations is consistent with the common use of K0 to define the stress 

ratio in normally consolidated soil under a widely loaded area, as mentioned above, the 

agreement with experimented data, well investigated by Mayne and Kulhawy, (1982) 

[17], being defined as coincidence[9]. Similarly, Tschebotarioff, (1953) [28], commented 

that Jáky's assumptions in the derivation[9] are unacceptable. Handy [8] gave also a 

mathematical proof, (Eq. 11 of his paper), in which Jáky's equation can be derived using 

the approximate vertical stress. His final recommendation is to use K0 11 1= −. ( sin )φ  as a 

safer approximation, since the equation for K0 originally derived from a consideration of 

arching, and for an immobile, rough wall. Practicing engineers can be unaware of these 

finer distinctions in theoretical and experimental considerations, and use K0 of Eq. 1 

routinely. 

 

In this paper variational method, reference [29], is used first to derive K0 for normal and 

overconsolidated sand. The method is applied over a soil failure mechanism the keeps the 
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at rest lateral forces unchanged. Second: a reasonable approximation is derived for 

normal and overconsolidated clay. Also, rigid reinforced soil is examined for comparing 

the derived slip surfaces. The derivation can be readily extended for a slanted wall with a 

sloped soil on surface. This in turn prepares the way for dynamic analysis. 

 

Incipient Shear and K0 Failure Mechanism 

Consider taking a horizontal slice from the ground with a height y, and introducing an 

imbalance loading as seen in Fig. 1(a). Assume that the soil was at the at rest condition 

before introducing the imbalance surcharge loads. It is desirable to show the effect of this 

imbalance loading on the horizontal force on line A-B. Thus, we need to investigate the 

loads before and after the imbalance loading. (1) Before: By taking an arbitrary angle α to 

create two immobilized wedges, as seen in Fig. 1(a), the sum of the forces yields: 

E N Fh = −sin cosα α , and W N F= +cos sinα α , where W is the weight of the wedge, 

Eh is the horizontal force on line A-B, N is the normal force, and F is the immobilized 

friction. (2)After: By using the same arbitrary angles, the change in N and F, due to the 

imbalance surcharge loading q and - q, is ∆N and ∆F respectively. When considering axi-

symmetry, the net change ∆N and ∆F on one wedge is equal and opposite to the net 

change on the other wedge. From Fig. 1(b) the new equations yields: (1) the right wedge 

(ABD): − − = − −∆ ∆N F qy Tcos sin cotα α α , and ∆ ∆ ∆E N Fh = − +sin cosα α . (2) the 

left wedge (ABC): ∆ ∆N F qy Tcos sin cotα α α+ = + , and ∆ ∆ ∆E N Fh = −sin cosα α . 

Equating ∆Eh from the left wedge to the right wedge yields ∆ ∆F N= tanα . When 

substituting back to find ∆Eh , it gives ∆Eh = 0. Thus the imbalance loading does not 

change the at rest force on line A-B where the maximum shear occurs. If the surcharge 
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pressure q and - q is continually increased the result is a failure surface, where ∆F F+  in 

the left wedge (ABC) reaches the failure criterion of a fully mobilized friction. For the 

right wedge (ABD), the friction will not quite be fully mobilized. To show this, it is 

sufficient to show that ( ) / ( ) ( ) / ( )F F N N F F N N+ + > − −∆ ∆ ∆ ∆ . This lead to 

∆ ∆F N F N/ /> , or tan tan / ( cos )α α α> − E Nh , which is true. 
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(c) Incipient shear on two sliding walls.

α α

 

A reasonable question: if the failure surface is not a line, will it change ∆Eh? If the above 

analysis was to assume a curve instead of a line for the immobile friction, the hypothesis 

(∆Eh = 0) would still hold for the right and left vertical slices adjacent to line A-B. This 
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can be seen by treating the bottom of each slice as a wedge with some slope and a 

surcharge on top of it. Repeating the analysis on each slice with its corresponding mirror 

image slice, will give the same results, when summing all the forces. Thus, the hypothesis 

is valid for any arbitrary curve, and not just a line. Furthermore, if the imbalance loading 

q and - q were any axi-symmetric loading, the hypothesis that ∆Eh = 0 remains valid. 

From this observation it is necessary to introduce a name for the type of shear, T, which 

was introduced on line A-B to be the incipient shear. The full definition of the incipient 

shear is: A shear introduced to a boundary or a line is an incipient shear when the 

normal forces to the boundary or the line do not change. It is important to note that the 

horizontal force of Fig. 1(a) does not need to be the at rest force. Thus, the incipient shear 

hypothesis is applicable for other conditions.  

 

It is noteworthy that the hypothesis of the incipient shear was arrived at without the use of 

elasticity, plasticity, or elastoplastic methods. When comparing with elasticity the result is 

the same. For example, integrating Flamant's equation, (1892) [27], for any axi-

symmetric load on a semi-infinite media yields σh = σv = 0, and the strain is zero at line 

A-B of Fig. 1(a).  

 

To simplify the analysis it would be beneficial not to deal with the surcharge q. Consider 

the two buried walls in the horizontal slice of Fig. 1(c). Between the walls are rollers to 

give a perfectly smooth surface. If P1 = P2, the wedge analysis is identical to the above for 

Fig. 1(a). The result is the same hypothesis ∆Eh = 0. The first failure surface would be 

that of P1, a downward incipient shear. The failure surface is expected to be different than 
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that of Fig. 1(a). However, the before and after, at rest lateral forces are kept the same 

since ∆Eh = 0. 

 

From these observations, when considering the downward incipient shear of Fig. 1(c), it 

is expected that the K value will have variation inside the wall. It will start at K = K0 at 

the wall and will reoccur internally at some distance inside the wall. This is necessary 

since going further inside the wall, the incipient shear has a lesser influence on the 

stresses and the at rest forces will reoccur. Thus K0 will reoccur at some point at x = xm 

from the wall and the boundary condition on the slip surface can be considered to have K0 

at both ends. 

 

Once the K0 failure mechanism is realized, K0 can be derived from finding the maximum 

horizontal force for an active slip surface. Additionally, the boundary condition must be 

satisfied. Maximizing the horizontal force will lead to K0, and not any other active force 

coefficient because the horizontal force will reduce if the boundary moves slightly 

outward from zero deformation to an active slip surface. Experiments by Terzaghi (1934, 

1941) [25, 26], Sherif et al. (1982,1984) [21, 23], and Fang et al. (1986) [7] indicated that 

regardless of the outward movement of a rigid wall, the horizontal force reduces from the 

at rest condition. Thus, the at rest force is the upper bound for an active slip surface 

failure. These tests were done for translating walls, rotating walls from top and bottom. 

The outward movement reduces the horizontal force from the at rest condition because it 

induces tension in the soil. Cohesionless soil can hardly take tension. Thus, if the failing 

wedge is subdivided into vertical slices, the shear in the slices will reduce. Excessive 
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outward movement will result in an active condition where the shear in the slices 

becomes zero. Hence, it is sufficient to find the at rest  force by maximization with an 

active slip surface due to a downward incipient shear with the proper boundary condition. 

Thus the necessary criterion in deriving K0 is obtained. 

 

Boundary Conditions for Sand 

Subdividing the failure wedge of the downward incipient shear into vertical slices, 

following Bishop (1955) [1], yields slices that are each in equilibrium, so that the 

overturning moments remain in balance and not of concern. Each slice is added together 

to make the wedge in Fig. 2. The resultant of the boundary forces on a slice can be 

transformed to a Coulomb, (1776) [3], wedge as shown on Fig. 3(a),(b). From the 

Coulomb wedge one can write 

( )
( )dE

dw
x =

−

+ −









tan

tan tan tan

α φ

α φ α1 δδδδ
 ,.............................................................................. (2) 

( )
dW

y dy y dy dw
= −

− +







 =γ

α α2 tan tan
 ,.......................................................................... (3) 

 

dE dEy x= tanδδδδ  ,......................................................................................................... (4) 

and 

dy dx= − tanα  ............................................................................................................. (5) 

 

Extremizing the boundary forces in a slice can be done in three ways: (1) extremizing the 

horizontal force dEx , (2) extremizing the vertical force dEy , (3) extremizing the resultant 
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force of dEx and dEy. To extremize dEx it is necessary to hold dy constant and vary dx 

because dEx = −Kydy, and extremizing K is of interest. Thus ydy must be 
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held constant. To extremize dEy  dx must be held constant and dy must be varied. dEy 

must be extremized to achieve a constant dW = γydx. Thus, ydx must remain constant. In 

many cases, dEy is taken as dE x tanδδδδ . In these cases dy is to be held constant and dx is to 

vary. To extremize the resultant it requires dx tan( ) / cosα − δδδδ δδδδ  be held constant. This can 

be realized by rotating the axis by δδδδ from the vertical in order to have the resultant in a 

horizontal direction. 

 

In the boundaries in Fig. 2, it is desirable to find the angle α that gives the smallest dEy, 

which causes the first and last slice to fail, while dEx is at maximum. From the above 

consideration on extremizing the forces in a slice, one finds that dx and dy must be held 

constant. This gives no unique solution since two different α's can be derived from Eq. 5. 

However, at the boundaries the forces are already at maximum and dEx = K0γydy 
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regardless of α or the value of the incipient shear. Additionally, the bulk of the movement 

is in the vertical direction. Thus the failure of these slices will be primarily from dEy due 

to the incipient shear. Therefore the slice wedge at the boundaries can be considered to 

have movements in the vertical direction, and α can be obtained by keeping only dx 

constant. Writing Eq. 2 in terms of dEx and dEy with Eq. 5 and Eq. 3, yields 

 

[ ]
− = −

− +
+ − = − + −dE

y dy y
dx dE ydx K ydxy xγ α φ γ γ α α φ

( )
cot( ) ( ) tan cot( )

2 0  ........ (6) 

Minimizing the downward force -dEy in Eq. 6, − =
= =

dE

d

y

x x xm
α

0

0
 and 

, yields 

α α α π φ= = = +0 4 2m / /  .......................................................................................... (7) 

 

where α0 is the wedge angle for the first slice, and αm is for the last slice. Note: α = 0 is 

not considered as solution for the minimum of Eq. 6, since the downward movement will 

cause a non-zero slope in the slices. Also, α π φ= +/ 2  cannot be considered as a solution 

since α π≤ / 2. Now that the boundary conditions are selected, maximizing the horizontal 

force with these boundaries must result in K0. A first approximation can be done by 

selecting the slip surface as a line with a slope at all α's in the slices to be π φ/ /4 2+ , 

and selecting δδδδ = −φ to maximize the horizontal force in Eq. 2. Substituting 

α π φ= +/ /4 2 , and δδδδ = −φ in Eq. 2 and integrating y from y0 to zero yields 

 

E dE ydyx y0 0

0 4 2

1 4 2

1

4 20

cos
tan( / / )

tan tan( / / ) tan( / / )
δ γ

π φ
φ π φ π φ

= ≅ −
−

− − +
∫∫  
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                            ≅ −
γ

φ
y0

2

2
1( sin )  .............................................................................. (8) 

 

where the identity tan( / / ) tan / cosπ φ φ φ4 2 1± = ± +  were used. Eq. 8 gives a 

K0 1≅ − sinφ  as in Eq. 1, where Jáky's equation is derived from unacceptable 

assumptions and is considered a coincidence. There are considerations that need to be 

investigated for this approximation:  (1) The integration of Eq. 4 yields δ0 = −φ. However, 

another slip surface can occur before this one, where the incipient shear is lower and 

reaches a directional angle −δ0 < φ with a slightly higher K0 value than Eq. 8. This will be 

shown later on in the derivation. (2) Eq. 8 is derived by assuming a constant K0 value in 

all the slices. This is contrary to common sense since variation in the stresses, thus the K 

value, are expected inside the wall. It can be concluded that Eq. 8 or Jáky's equation is 

only an approximation, and the slip surface and the directional angle δ0 are incorrect. 

 

Sand Analysis 

K0 for sand will be derived from an extremum condition using variational methods with 

the boundary condition of Eq. 7. With the extremum method one selects arbitrary 

admissible slip surfaces and determines the forces acting on the boundaries of the earth 

mass. The definitive slip surface is one, which furnishes an extremum value for the 

horizontal force. Maximizing the horizontal force E0 0cosδ  can start by maximizing each 

slice individually. The horizontal force dEx of the slice in Eq. 2 can be treated as a 

coulomb wedge with a uniform surcharge; it is required that 
dE

d

x

α
= 0 . Thus 
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( ) ( )
( )

( )
( )

( )
tan

sin

sin tan

cos sin

sin

cot cot cot

cot cot
δδδδ =

−
−











−
=

−

−
=

− +

−

2

2
1

1 2 1 2
2

2

2

α

α φ α φ

α φ φ

α φ

α φ α

φ α
 

                       ............................................................................................................. (9) 

 

where tanδδδδ  is expressed three different ways for convenience and it yields 

( ) ( )[ ]cot tan cot cotα φ φ φ= − + − + +δδδδ δδδδ1 1  .............................................................. (10) 

 

If plotting Eq. 10 it shows that α > φ for all −φ ≤ δδδδ ≤ φ. Also, Eq.10 is the Coulomb 

wedge angle for a vertical wall with wall friction. If δδδδ = 0 in Eq. 9 or 10  α = 

π/4 + φ/2, where ( )− + = +tan / cos cot / /φ φ π φ1 4 2 . This checks with an active 

Coulomb wedge with δδδδ = 0 . Now, note for α > φ in Eq. 2 the force dEx is maximized 

when δδδδ ≤ 0. Thus the boundary points for the slip surface of Fig. 2 can be taken in the 

region −φ ≤ δδδδ ≤ 0 or at π/4 + φ/2 ≤ α ≤ π/2. Thus, α0 = π/4 + φ/2 , and αn= π/2 as in Eq. 7. 

For a given y0, xn and yn will be determined from these prescribed end points. Substituting 

Eq. 9 in Eq. 2 and 4 and rearranging yields 

( )dE ydxx = −γ φ φ α αsin cot cot tan2 2
 ...................................................................... (11) 

( )dE ydx ydxy = + −2 2γ φ γ φ φ α αsin sin cos cot tan  

        ( )= − + +γ φ α γ φ φ φ α αtan tan cos sin tan cot tanydx ydx
2

 

        ( )= −tan cotφ γ αydx dEx  ................................................................................... (12) 

Where 
dw

tanα
 is replaced by γydx, γ is the soil constant, and dEy is expressed in different 

ways for convenience. From Fig. 3a one can write 
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E E dEi i i i xcos cosδ δ− =+ +1 1  ..................................................................................... (13) 

 

E E dEi i i i ysin sinδ δ− =+ +1 1  ...................................................................................... (14) 

 

When starting with E0 and ending with En Eqs. 13 and 14 yields 

E dE Ex
i

n

n n0 0
0

1

cos cosδ δ= +
=

−

∑  .................................................................................... (15) 

E dE Ey
i

n

n n0 0
0

1

sin sinδ δ= +
=

−

∑  ..................................................................................... (16) 

 

By taking tanα = − ′y  in Eq. 11 and 12 and replacing the summation sign by the  integral 

sign in Eq. 15 and 16 it yields 

E
y

y ydx E
x

n n

n

0 0

2

0

2
1

cos sin cot cosδ γ φ φ δ= − +
′









 ′ +∫  ................................................ (17) 

E ydx y
y

ydx E
x

n n

xn n

0 0

2

0 0
2

1
sin sin sin cos sinδ γ φ γ φ φ δ= + ′−

′









 +∫ ∫        

               = ′ − −
′









 ′ +∫∫γ φ γ φ φ φ δtan sin cos tan siny ydx

y
y ydx En n

xx nn 1
2

00
 

               = −
′

− +∫∫γ φ γ φ δtan tan sin
y

y
dx dE Ex

xx

n n

nn

00
 ........................................... (18) 

 

To use variational method to maximize horizontal force E0 0cosδ , Eq. 17 needs to be 

extremized while Eq. 18 is to be satisfied. Eq. 18 can be satisfied by choosing the proper 
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directional angles δ0 and δn. Similarly, E0 0cosδ  can be maximized by extremizing Eq. 18 

while Eq. 17 to be satisfied, and again the proper directional angles can satisfy Eq. 17. 

Note: E0 0sinδ  is taken as ( cos ) tanE0 0 0δ δ .  These conditions leads to a deduction that 

there are two slip surfaces that can maximize E0 0cosδ , and both surfaces can occur. 

Since it is desirable to look for the horizontal pressure in Fig. 2, the resulting slip surface 

from maximizing Eq. 17 will be the first slip surface and the slip surface resulting from 

maximizing Eq. 18 will be the next one. This situation will become more evident when 

the slip surfaces are obtained and the boundary conditions are imposed. Thus, Eq. 17 or 

18 can be extremized alone while the other can be satisfied with a suitable δ0 and δn. 

When starting with Eq. 17 the boundary conditions are prescribed: at x = 0 y = y0, at x = 0 

and y = y0  ( )′ = − − = −x tan / / tan / cosπ φ φ φ4 2 1  , and at x = xn and y = yn ′x  = 0. Note 

also that En ncosδ  in Eq. 17 is prescribed from a second slip surface such that 

δ( cos )En nδ  = 0. Thus, the Euler equation [29] from variational method can be applied: 

∂
∂

∂
∂

ℜ
−

ℜ

′









 =

y

d

dx y
0 ..................................................................................................... (19) 

where  ℜ = − +
′









 ′γ φ φsin cot2

2
1

y
y y  ......................................................................... (20) 

 

Since ℜ does not involve x explicitly then 

ℜ− ′
ℜ

′
=y

y
h

∂
∂

 ............................................................................................................ (21) 

where h is a constant. Applying Eq. 21 on Eq. 20 yields 
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1
1

′
= − −











y

h

y
cot

'
φ  .................................................................................................... (22) 

where h' is a new constant. By using the boundary condition ′ =x 0 at y yn= , h' can be 

found and Eq. 22 can be written as 

1
1

′
= ′ = − −











y
x

y

y

n
cot φ  ........................................................................................... (23) 

By using the end condition at y y x= ′ = − = +0 01 4 2         for tan / cos / /φ φ α π φ  on Eq. 

23 yields 

 

( )y yn0 1= + sinφ  ....................................................................................................... (24) 

 

When integrating Eq. 23 and using the end condition at x y y= =0 0  , it yields the first 

slip surface Eq.: 

x y y y
y

yn= − − −








cot lnφ 0

0

 .................................................................................... (25) 

 

By using Eq. 24, Eq. 25 can be written as 

( )( )[ ]Ω =
+

− + − +
cot

sin
sin ln

φ
φ

φ ψ ψ
1

1 1  ...................................................................... (26) 

Where Ω = =
x

y

y

y0 0

 and ψ  . Fig. 4 shows different slip surfaces for various values of φ 

for the region 
1

1
1

+
< <

sinφ
ψ . The horizontal distance can be written as  

[ ]x
y

n = +
+ +0

1
1

cot

sin
sin ln( sin )

φ
φ

φ φ  .............................................................................. (27) 
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By substituting Eq. 23 in Eq. 17 and 18, changing the interval to [ , ]y yn0   instead of 

[ , ]0 xn , and replacing ′y dx by dy, yields 

E
y

y
dy E

n

y

y

n n

n

0 0

2

2 2

0

cos sin
cot

cosδ γ φ
φ

δ= − +∫  

                = +γ φ δy
y

y
En

n

n n

2 2 0
cos ln cos  ................................................................... (28) 

( )( )E y y y y y
y

y
En n n

n

n n0 0 0 0

2 2 0

2
3sin

cot
cot cos ln sinδ

γ φ
γ φ φ δ= − − + +  .................. (29) 
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Substituting Eq. 24 in Eq. 28 and 29 yields 

 

( )E y En n n0 0

2 2 1cos cos ln sin cosδ γ φ φ δ= + +  ............................................................ (30) 

( ) ( )E
y

y E
n

n n n0 0

2

2 2

2
2 1sin

cos
sin cot cos ln sin sinδ γ

φ
φ γ φ φ φ δ= − − + + +  ............... (31) 

 

Thus the analysis of the first slip surface is obtained. Note for x xn>  Eq. 23 has no y 

values. In fact the curve circles toward the first boundary, as seen in Fig. 2, indicating 

another slip surface must occur in order to reach the top of the ground. So, it remains to 

find the second slip surface and the force En . Consider the second slip surface shown in 

Fig. 2. 

For maximum condition in the slice using Eq. 2 and for matching the end of the first slip 

surface, the boundary condition can be taken as α π α π φn m= = +/ / /2 4 2 and . 

Rewriting Eq. 17 and 18 in terms of the forces of the second slip surface in Fig. 2, yields 

E
y

y ydx En n m mx

x

n

m

cos sin cot cosδ γ φ φ δ= − +
′









 ′ +∫2

2
1

 .............................................. (32) 

E y ydx
y

y ydx En n x

x

x

x

m m
n

m

n

m

sin tan sin cos tan sinδ γ φ γ φ φ φ δ= ′ − −
′









 ′ +∫ ∫ 1
2

 ................. (33) 

 

Using variational method on Eq. 33 to extremize En ncosδ  yields 

′ = −








x

h

y
tan

'
φ 1  ........................................................................................................ (34) 
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where h' is a constant. By using the boundary condition at   y y x yn= ′ = ′ =    1 0/  for 

α πn = / 2 on Eq. 34, h' is found and the equation can be rewritten as 

′ = −








x

y

y

n
tanφ 1  ...................................................................................................... (35) 

 

Using the other end condition at  y y xm= ′ = −    tan / cosφ φ1   for  α π φm = +/ /4 2 , Eq. 

35 yields 

 

y ym n= sinφ  ............................................................................................................. (36) 

 

When integrating Eq. 35 and using the end condition at x x y yn n= =   , the second slip 

surface is obtained: 

x y y y
y

y
xn n

n

n= − −








 +tan lnφ  ................................................................................ (37) 

 

From Eq. 24, 27 and 36, Eq. 37 can be rewritten as 

 

[ ][ ] [ ]{ }Ω =
+

+ − − + + − +
1

1
1 1 1 1

sin
tan ( sin ) ln ( sin ) cot sin ln( sin )

φ
φ φ ψ φ ψ φ φ φ ........ (38) 

Where Ω = =
x

y

y

y0 0

  ,    ,  and  
sin

1+ sin
< <

1

1+ sin
,ψ

φ
φ

ψ
φ

 see Fig. 4 for the plot of Ω and 

ψ for the second slip surface. The total horizontal distance can be written as 

[ ] [ ]{ }x
y

m =
+

− − + − +0

1
1 1

sin
tan sin ln(sin ) cot sin ln( sin )

φ
φ φ φ φ φ φ  .......................... (39) 
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By substituting Eq. 35 in Eq. 32 and 33 with the interval [yn, ym] instead of [xn, xm] and 

with ′ =y dx dy , it yields 

E y
y

y

y

y

y

y
En n n

m

n

m

n

m

n

m ncos
cos

tan tan sin ln cosδ γ
φ

φ φ φ δ= −


















 − −









 −












+2

2

2

2 2 2
1

2
1 2 1  

                                     .............................................................................................. (40) 

E y
y

y

y

y
En n n

m

n

m

n

m msin
tan

tan sin ln sinδ γ
φ

φ φ δ= − −


















 −












+2

2

2

2
1  ......................... (41) 

 

Substituting Eq. 36 in Eq. 40 and 41 yields 

( ) ( )E y En n n m mcos tan sin tan sin ln sin cosδ γ φ φ φ φ φ δ= − − −





+2 2 2 2

1

2
2 1  ................ (42) 

( )E y En n n m msin
sin cos

tan sin ln sin sinδ γ
φ φ

φ φ φ δ= − +





+2 2

2
 ................................. (43) 

 

Substituting Eq. 42 and 43 in Eq. 30 and 31 yields 

( ) ( ) ( )E y En m m0 0

2 2 2 2 2
1

1

2
2 1cos cos ln sin tan sin tan sin ln sin cosδ γ φ φ φ φ φ φ φ δ= + + − − −






+  

                                       ............................................................................................ (44) 

( ) ( ) ( )E y En m m0 0

2 2 2

2
2 1

2
sin

cos
sin cot cos ln sin

sin cos
tan sin ln sin sinδ γ

φ
φ φ φ φ

φ φ
φ φ φ δ= − − + + − −






+  

                                       ............................................................................................ (45) 
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Now Eq. 44 and 45 gives the maximum possible E0 0cosδ  for the given boundary 

conditions. Since the boundary conditions are satisfied, the horizontal forces can be taken 

as E K
y

E K
y

m m

m

0 0 0

0

2

0

2

2 2
cos cosδ γ δ γ= = ,  and   in Eq. 44. Thus, from Eq. 44, 24, and 

36 K0 can be found: 

( ) ( ) ( )
( )

K0

2 2 2 2

2 2

2 1 1 4 1 2

1
=

+ + − − −

+ −

cos ln sin sin tan tan sin ln sin

sin sin

φ φ φ φ φ φ φ

φ φ
 .................. (46) 

 

Since δ δ0  and m are arbitrary, they can be set equal. This can be realized since the 

incipient shear can be assumed to vary linearly with depth at the boundaries. Thus, from 

Eq. 45, setting E E K
y

0 0 0 0 0 0

0

2

02
sin cos tan tanδ δ δ γ δ= =  and 

E E K
y

m m m m

m
sin cos tanδ δ γ δ= = 0

2

02
, it yields the incipient shear directional angle: 

( ) ( ) ( )
( )[ ]

tan tan
cos sin cot cos ln sin sin cos tan sin ln sin

sin sin
δ δ

φ φ φ φ φ φ φ φ φ φ

φ φ
0

2 2

2 2

0

2 2 1 2

1
= =

− − + + − −

+ −
m

K
 

                               .................................................................................................... (47) 

 

From Eq. 30 and 31 tanδ n  can be expressed as: 

( ) ( )
( )tan

sin cos sin / cot cos ln sin

cos cos ln sin
δ

δ γ φ φ γ φ φ φ

δ γ φ φn

n n

n

E y y

E y
=

+ − − +

− +
0 0

2 2 2

0 0

2 2

2 2 1

1
 ................... (48) 

or 

( ) ( ) ( )
( ) ( )

tan
sin tan cos sin cot cos ln sin

sin cos ln sin
δ

φ δ φ φ φ φ φ

φ φ φ
n

K

K
=

+ + − − +

+ − +

0

2

0

2

0

2 2

1 2 2 1

1 2 1
 .................. (49) 
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Table 1 gives the comparison of different K0 for Jáky, Handy, and as derived. Note 

− <δ φ0  for all φ and the incipient shear is smaller indicating that K0 of Eq. 46 supersedes 

that of Eq. 8. 

 

Due to the propagation of the incipient shear, it can be anticipated that the two slip 

surfaces can repeat for x xm> . Now, it is important to show that the K0 of Eq. 46 is the 

same when considering all the slip surfaces to the top of the ground. Let K1 be the term in 

the bracket of Eq. 44. Utilizing Eqs. 24 and 36, an expression from one set of slip 

surfaces to another can be obtained: y yn n( ) / ( ) sin / ( sin )bot top = +φ φ1 . Using this 

relation and substituting all sets of slip surfaces in Eq. 44 yields 

E K yn0 0 1

2

2 4 6

1
1 1 1

cos
sin

sin

sin

sin

sin

sin
δ γ

φ
φ

φ
φ

φ
φ

= +
+









 +

+














 +

+









 + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅........................ (50) 

 

or 

( )
E K y

K y K y
n

i

i

n

0 0 1

2

2

0

1

2 2

2 2

0 0

2

1

1

1 2
cos

sin

sin

sin

( sin ) sin
δ γ

φ
φ

γ φ
φ φ

γ
=

+









 =

+

+ −
=

=

∞

∑ .............................. (51) 

 

This gives exactly the same K0 of Eq. 46. Thus, the solution is consistent, and this method 

of substitution can also be done on Eq. 45 to show that tanδ 0 is exactly the same as that 

of Eq. 47. Consequently, the assumption that δ δ0 = m  is correct. 
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φ Jáky Jáky Handy Handy Derived δ0 = δm* δn* 

Deg. 1-sinφ 0.9-sinφ 1.1(1-sinφ) 1.06(1-sinφ) K0 Deg. Deg. 

***0 1.0000 0.9000 1.1000 1.0600 1.0000 0.00 -0.00 

10 0.8264 0.7264 0.9090 0.8759 0.8989 -8.90 -9.58 

20 0.6580 0.5580 0.7238 0.6975 0.7150 -16.67 -18.37 

30 0.5000 0.4000 0.5500 0.5300 0.5285 -24.36 -26.74 

40 0.3572 0.2572 0.3929 0.3786 0.3648 -32.51 -35.06 

50 0.2340 0.1340 0.2574 0.2480 0.2311 -41.54 -43.72 

60 0.1340 0.0340 0.1474 0.1420 0.1287 -51.77 -53.18 

70 0.0603 -0.0397 0.0663 0.0639 0.0567 -63.38 -63.97 

80 0.0152 -0.0848 0.0167 0.0161 0.0141 -76.29 -76.38 

**90 0.0000 -0.1000 0.0000 0.0000 0.0000 -90.00 -90.00 

* Derived in this paper.           ** As in completely rigid.              *** As in hydrostatic. 

 

                                            Table 1- K0 comparison 

 

 

 

Comparing K0 sand with experiments 

Mayne and Kulhawy, (1982) [17], made a statistical analysis of 171 tests, where some of 

these tests had missing φ values (some in clay and some in sand). Their result showed that 

Jáky's equation is applicable. However, the linear regression was biased toward curve 

fitting Jáky's equation. Their correlation number r = 0.802 for 121 points. Adding 17 
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more tests, see reference [ 4, 5, 6, 15, 16, 18, 19, 20], and computing the absolute value of 

the error on 138 tests yields: 

 

Error  Derived Jáky 

0 to 1% 23  18 

1 to 5% 58  70 

5 to 16% 57  50 

Total No. of tests 138 138 

 

It is clear from this observation that the derived K0 compares with experiments just as 

good, perhaps a little better. 

  

Comparison of the slip surface for sand with experiments 

There is no available experimental data publication on slip surfaces for K0 due to shear 

failure. However, it is notable that the slip surfaces are similar results to slip surfaces of 

rigid reinforced earth problems. In the reinforced soil walls (rigid type), the developments 

of the force E E0 0 0 0cos sinδ δ  and   are dissipated in the reinforcements. Thus dEx and 

dEy in every slice are reduced by the tension of each segment in the reinforcements, 

ending with E0 = 0 at the face of the wall. The problem of maximization has the same 

equations as the rigid wall. In this case, the forces in the reinforcements need to be 

maximized instead of the force on the boundaries. Thus, ∑dEx and ∑dEy needs to be 

maximized, where the slice of Fig. 3(a) and (b) will have reinforcements sticking out of it 

and dEx and dEy represent the resultant forces. Thus, the resulting slip surface must be the 
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same as the derived ones. Also, the boundary conditions on the slip surface are the same. 

Experimentally α0 = π/4 + φ/2 , see Juran and Christopher, (1989) [13]. Thus, from the 

first slip surface in Eq. 28 and 29, −δn will have higher values than φ, since δ 0 0= . This 

is expected since the shear can be taken by the reinforcements. The second slip surface 

will finish at a point similar to the front face, since that portion of the wall can be taken as 

a surcharge on a layer of reinforcements. Thus the tension in these reinforcements takes 

the lateral load leaving the upper surface at the surcharge area to start anew. Thus, 

α π φm = +/ /4 2 . At this point δm will have a value similar to δn. Thus, from there on it 

can be considered similar to an incipient shear at zero deflection, and the slip surfaces 

will repeat. When integrating over all the slip surfaces, the final horizontal and vertical 

forces to the top of the wall will not be zero; they represent the total horizontal and 

vertical forces in the reinforcements. In both cases, the friction on the bottom of the slices 

is fully mobilized causing an active slip surface. Even though the equations come out the 

same, due to the variational function, the location of the forces are not in the same place. 

To find the location of ∑dEx and ∑dEy in a reinforced earth mass, it is necessary to take 

moments of the slices. Thus Mx = ∑ydEx and My = ∑xdEy. By integrating over all the slip 

surfaces, to the top of ground, the moments can be obtained, thus the location of the 

forces.  

 

When comparing with an experiment found by Juran, Beech, and De Laure[12] this gives 

a good result. Their experiment gave data for a slip surface for a rigid inclusion  
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            FIG. 5 Comparison of Slip Surface with Experiment (Juran et al.1984)  for φ = 35 

 

(a relatively rigid polystyrene) soil nailed wall. The rigid polystyrene strips failed because 

of excessive bending. The failure surface was observed in the soil using colored sand 

coinciding with the location of the breakage points in the reinforcements. However, when 

the failure is induced by excessive nail bending, the breakage points are located at a 

certain distance behind the failure surface observed in the soil.  It is expected that in a 

rigid soil nailed wall the slip surface in front of the breakage points is that of K0. Fig. 5 

shows an excellent result ( 0.7% Ave error or 0.7cm for H = 100cm) for φ = 35 deg using 

Eq. 26 and 38 repeatedly. Note: the total x distance from the face of the wall to the slip 

surface on the top surface is equal to xm ( sin )1+ φ , where xm is that of Eq. 39. 
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                    FIG. 6 Comparison of Slip Surface with Experiment (Juran et al. 1989) 

                             (Model No. 3 - End of Construction) φ = 40 and y0 = 80 cm 

 

Juran and Christopher[13] did a laboratory model study on geosynthetic reinforced soil 

retaining walls. The soil used in the study was a fine Fontainbleau sand (poorly graded, 

average grain diameter 0.1 mm) with φ = 40. Colored sand was used to detect the failure 

surface in the soil. Three different types of geosynthetic reinforcing materials were used: 

Woven polyester strips; non-woven geotextiles; and plastic grids. The results on the 

tension forces measured in the woven geotextile strips correspond fairly well to those 

estimated, assuming that the soil is at K0 state stress. In his third model wall (Model No. 

3) the initial failure surface at end of construction was observed to be quite different from 
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                  FIG. 7 Comparison of Slip Surface with Experiment (Juran et al. 1989) 

                             (Model No. 7 - with Plastic Grids) φ = 40 and y0 = 59.5 cm 

 

Coulomb's failure plane, whereas the final one (failure after 12hr) corresponds fairly well 

to Coulomb's failure plane. It is expected that the initial failure surface at end of 

construction will correspond to K0 failure surface. Fig. 6 shows an excellent result ( 1.3% 

Ave error or 1.05cm for H = 80cm) for φ = 40 deg, where the angle φ = 40 gives the exact 

Coulomb's failure plane observed after 12hr. The results on the tension forces measured 

in the non-woven geotextiles for low overburden correspond fairly well to those 

estimated, assuming that the soil is at Ka state stress. However, as the overburden stress 

increases, the reinforcement material seems to undergo a strain hardening phenomenon 

and the tension forces in the reinforcements approach those predicted, considering a K0 
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state of stress in the soil. The initial failure surface is expected to be of a K0 slip surface 

but it was not recorded. However, it was mentioned in Juran, Ider, and Farrag[14] to be 

an inclination of  75 to 78 degrees; which is expected for a K0.  The result on the tension 

forces measured in the plastic grid are close to those predicted, assuming that the soil is at 

K0 state stress. The initial and final surface is quite different from the Coulomb failure 

surface. This is expected since rigid inclusions were used. Fig. 7 shows excellent result ( 

1.12% Ave error or 0.66cm for H = 59.5cm) for φ = 40 deg.  

 

Overconsolidation of sand 

When the present effective overburden pressure is the maximum pressure to which the 

soil has been subjected at any time in its history, the deposit is referred to as normally 

consolidated. A soil deposit that has been fully consolidated under a pressure larger than 

that of the present overburden is called overconsolidated. The K0 of Eq. 8 and 46 is 

referred to as normal consolidation because the weight used in the derivation is the 

existing weight, and no prehistoric weight causing locked-in stresses were used. To 

achieve overconsolidation forces, locked-in horizontal forces must enter the equations 

and be considered on each slice. For the purpose of demonstration of dependencies, a 

one-dimensional approach will be used. Consider the structural beam in Fig. 8. 
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                                            FIG. 8 - Locked-in Force in a Beam 

The uniform load q y0 ( )  has deflected the beam axially to a horizontal position. Then the 

load q y0 ( )  is removed from the beam. If the beam cannot go completely back to its 

original position, the result is a locked-in force P. Writing the force P in terms of 

deflection yields:P dzdy E L= ∆ / . When considering that the locked-in force in the 

structural beam corresponds to locked-in forces in soil, E can be replaced by the soil 

spring modulus E '  due to the intensity of the contact pressure. ∆ can be replaced by the 

change in unit weight from loose to dense: L L L D/ ( ) /− =∆ γ γ , ∆ = −( / )1 γ γL D L , 

where γL is the loose unit weight and γD is the dense unit weight after load removal (or 

rebound). Thus, P dzdyE L D= −' ( / )1 γ γ . Terzaghi, (1955) [24], recommended values for 

cohesiveless soil spring constants E n yh'= . Where nh is the subgrade modulus, and y is 

the depth. His tests were done under compression loading and nh has a range from 7-56 

Tons/ft3 (or 0.22-1.79 kg/cm3) for dry moist sand, and 4-34 Tons/ft3 (or 0.13-1.09 kg/cm3) 

for submerged sand. Thus, the compressive force in the soil can be estimated, and 
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P n ydzdycompressive h L D= −( / )1 γ γ . To find the necessary locked-in stresses to be used along 

with the at rest forces, one must find the expansion force. Since soil is not elastic, the 

compression force is not equal to the expansion force and it is much greater. 

Consequently, the compression force can be reduced by using the expansion to 

compression voids ratio. Thus the expansion locked-in force becomes 

P n
e e

e e
ydzdyh

e c

i c

L

D

expansion =
−
−

−








1

γ
γ

 .............................................................................. (52) 

 

So, ee is the expansion voids ratio at rebound or at load removal at γD, ec is the 

compressed voids ratio at full load, and ei is the initial voids ratio at loose state γL. Now, 

if the prehistoric surcharge is q yc ( ), then the compressive horizontal force is 

K q y dydzc0 ( ) . However, not all of the surcharge can be used since some expansion in the 

soil will occur after the removal of the surcharge. Thus, at compression to γD the 

horizontal locked-in force can be taken as q(y)dydz, where q(y) is to be determined. 

Equating this force with the expansion force of Eq. 52 yields 

q y n
e e

e e
ydyh

e c

i c

L

D

( ) =
−
−

−








1

γ
γ

 ..................................................................................... (53) 

 

In order to include q(y) in the derivation, the forces must be split into loose condition plus 

the locked-in force of Eq. 53. This is necessary since the estimated ∆ was for loose to 

dense sand. Additionally, from Fig. 8, the overconsolidation force is to be considered 

only in the horizontal direction. Thus, the resultant dE dEx y  and   for Eq. 2, 3, and 4 

becomes: 
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dE
dw

n
e e

e e
ydyx h

e c

i c

L

D

=
−

+ −
+

−
−

−










tan( )

tan tan( ) tan

α φ
α φ α

γ
γ1

1
δδδδ

 .............................................. (54) 

dE
dw

y =
−

+ −
tan( ) tan

tan tan( ) tan

α φ
α φ α

δδδδ
δδδδ1

................................................................................... (55) 

( )
dW

y dy y dy dw
L= −

− +







 =γ

α α2 tan tan
......................................................................... (56) 

 

When performing the boundary analysis, dEx  in Eq. 6 must have the additional term in 

Eq. 54, and so the resulting boundary condition remains the same. Furthermore, when 

performing the same analysis for obtaining δδδδ and variational analysis the result leads to 

the same slip surfaces. Therefore, the resulting coefficient K0c for over consolidation 

becomes: 

K K
n e e

e e
K

n e e

e ec

h

L

e c

i c

L

D

h

D

e c

i c

D

L

0 0 01 1= +
−
−

−








 = +

−
−

−










γ
γ
γ γ

γ
γ

 ............................................ (57) 

tan tanδ δ0

0

0

0c

c

K

K
=  .................................................................................................... (58) 

 

Where, K0 is of Eq. 46 (with φ for loose sand), and δ0 is of Eq. 47 (with φ for loose sand). 

It is remarkable that φ has no influence on the additive term due to overconsolidation, and 

γL and γD has the greatest influence. Let k n e e e eh h D e c i c= − −( / )[( ) / ( )]γ . The term kh is 

approximately constant, since nh is obtained by similar methods as the expansion to 

compression deflection ratio. nh varies with the density of material, and so are the 

required voids ratios. The variation of γD from γL is in the range from 0 to 6%. So, γD can 

be considered approximately constant. Thus, the term kh can be considered constant. On 
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the other hand, the incipient shear angle is reduced per Eq. 58. This is expected, since the 

failure wedge will be reached sooner due to overconsolidation. It is important to keep in 

mind that Eq. 57 and Eq. 58 were derived to investigate dependencies for a very complex 

problem. However, it is of merit to compare with experimental results. Sherif et. al., 

(1985) [22], showed that the variation of the additional term to K0(loose) is linearly 

dependent with γD/γL . Their experimental results for dry Ottowa Sand gave the value for 

kh  = 5.5. When using an average value nh = 27 tcf and γD = 100 pcf (from Sherif et. al.) it 

yields ( ) / ( ) . / .e e e ee c i c− − = =55 540 001. This is a very reasonable expansion to 

compression deflection ratio in sand. Thus it appears that Eq. 57 and 58 are valid for the 

conditions described above. When repeating the analysis in a higher dimension, as in a 

circular plate or a square plate with plane strain analysis, new equations can be derived. 

Thus, P = dzdy∆E/[L(1+ν)(1−2ν)], where ν is Poisson's ratio. From the volume ratio of 

before and after, ∆ / /L L D= −1 γ γ   giving  [ ]K Kc D L D L0 0 10 6= + −. / /γ γ γ γ , where 

ν was replaced by .3 for sand and kh  = 5.5 (from Sherif et. al.). When comparing 

numerically this equation with Sherif 's equation the results is of no significance in the  

difference in the additive term to K0 where 1 107< <γ γD L/ . .  

 

 

 

Clay Analysis 

Preliminary analysis indicates when the cohesion "c" is involved in the equations, 

mathematical harmony is difficult to achieve. It indicates that c will influence the slip 
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surfaces, K0, and the incipient shear angle. If the solution is to be done for only cohesion 

with φ = 0, the boundary angle becomes 45 degrees, and the variational equation gives a 

45 degrees line as the slip surface. This is an indication that if cohesion is added it will 

influence the solution more toward a line than a curve. Thus, a reasonable approximation 

of the solution for the normal consolidating clay can be obtained by using similar 

procedures as in Eq. 8. Table 1 shows the difference between Eq. 8 (Jáky's Eq. 1) and the 

derived Eq. 46 ranges from 0 to 8%. This difference can always be handled with a safety 

factor similar to the one proposed by Handy, (1985) [8]. When adding the cohesion c on 

the bottom of the slice, while keeping it in an upward direction and separate from dQ in 

Fig. 3-b, the resultant dE dEx y  and   for Eq. 2, 3, and 4 becomes: 

dE
dw c dy c dy

x =
− + − + ± −

+ −
γ α φ α α φ α α φ

α φ
tan( ) cot [tan( ) cot ] ' tan( )

tan tan( )1 δδδδ
 .......................... (59)  

dE dE c dy dEy y x= ± =' tanδδδδ  ..................................................................................... (60) 

 

where c' is the adhesion on the slice's boundary, c' dy is taken in front of the slice , and 

dE y  is the resultant vertical force separate from the adhesion so that the directional angle 

δδδδ is separated from the adhesion to insure δδδδ < φ . This can be seen by noting the cohesion 

on the bottom of the slice reduces dE dEx y and  since it reduces dW. If assuming all α's 

greater than π/4 , due to an active slip surface, then  d E dEy x will reduce more than . Thus 

d E dEy x/  will be lower than if there was no cohesion. Hence, δδδδ < φ  as long as the 

adhesion is separated.  
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For the boundary condition Eq. 59 is rewritten in terms of dE dE dxx y ,   ,  and : 

 

− = − + − + + −dE ydx dE cdxy xγ α φ α α φcot( ) [tan cot( )] ............................................ (61) 

 

dEx at the boundary is the at rest force and it can be taken as − −( )γK ydy K cdy0 0 , where 

K0 is the additional term for cohesion. Thus Eq. 61 becomes: 

 

− = − + − − + + −dE ydx K y K c dx cdxy γ α α φ α α φ( ) tan cot( ) [tan cot( )]0 0  ...................... (62) 

 

Minimizing the force -dEy in Eq. 62, − =
= =

dE

d

y

x x xm
α

0

0
 and 

, yields α α α π φ= = = +0 4 2m / / . 

Substituting in Eq. 59 tan( ) tan( / / ) tan / cosα φ π φ φ φ− = − = − +4 2 1 , 

cot tan( / / )α π φ= −4 2 , c' = c, δδδδ = −φ, taking the adhesion at the back of the slice to be in 

the opposite direction of the incipient shear so that the minus sign of the ±  sign applies , 

and integrating from y0 to 0 yields the force: 

E
y

cy0 0

0

2

02
1cos ( sin ) cosδ γ φ φ= − −  ....................................................................... (63) 

 

Thus, the stress is 

σ γ φ φh

xdE

dy
y c= = − −

0

0 1( sin ) cos  ............................................................................. (64) 
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The most remarkable conclusion in Eq. 64 is that K0 for clay is not constant when using 

σ σ σ γh v h y/ /= . Preliminary investigation indicates that even if the closed form solution 

is achieved the result is the same. But each term is still individualized by y0. In 

consideration of the simplicity of Eq. 64, other notable remarks can be made: (1) The 

equation is consistent with soil mechanics equations with cohesion such as active 

pressure, passive pressure and bearing capacities, where the cohesion and the 

cohesionless terms are two separate terms and not mixed. (2) The distance to zero stress 

calculated in active condition is at y c Ka1 2= / γ , and Eq. 64 gives one half this 

distance. This indicates that during a wall movement from at rest condition until an active 

condition the surcharge due to the tension zone increases by 1/2. This is also consistent 

with common sense, since one expects y1 to be between zero, or no tension, and the active 

tension zone, the maximum tension zone. 1/2 is exactly the average value. (3) If 

considering the undrain shear strength Su, the stress becomes σ γh uy S= − , which is 

greater than the active condition γy Su− 2 . This is expected from the at rest condition to be 

higher than the active condition for short-term loading. (4) When the ground is at rest, 

and due to gravity weight, tension must exist on top causing tension cracks from 

earthquake or any traction force. Comparing with elasticity, the elastic solution gives zero 

stress on top, which is contrary to physical evidence. Tension cracks exist in clay even in 

the at rest condition due to earthquake or any traction force. From these considerations, 

Eq. 64 offers a reasonable working formula for normally consolidated clay. 

 

 

 



 37 

Comparison with Experimental value for Clay 

Unfortunately, all the available tests did not account for cohesion. If considering 

K
c

y

h

v

0 1= = − −
σ
σ

φ
γ

φsin cos , the test will match depending on the load applied with σh. 

Thus, if σh is high , so the overburden is high, then c ycos /φ γ  becomes a small number 

and in this case K0 1≅ − sinφ  matches Mayne and Kulhawy, (1982) [17]. On the other 

hand, Brooker and Ireland, (1965) [2], recommended K0 0 95= −. sinφ for five different 

kinds of clay. This may be an indication that c was high for these clays and the term 

c ycos /φ γ  reduces the overall K0. For example: if γy = 94psi, for a high overberden, c = 

5psi and φ = 20o, it gives c ycos /φ γ  = 0.05 for the clay used in their experiments. This 

cohesion to initial stress ratio accounts for the overall reduction in K0. In any case, Eq. 64 

suggests new verifications tests are necessary for clay. This becomes a primary 

recommendation of this manuscript. 

 

 

 

Overconsolidation in Clay 

If setting the c = 0 in the closed form solution for clay (if obtained), the results must be 

the same as the equations for cohesionless soil. Thus, the equation of overconsolidation 

of sand, Eq. 54, must be modified for clay, where E n yh'≠ . Substituting and integrating 

from y0 to 0 over all sets of slip surfaces for cohesionless terms, and integrating over  y0 

to y2 for the overconsolidating term, yields 
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where y2 is the distance from the top of surface where overconsolidation stress starts. 

Adding back the cohesion term to the equation, and expressing it as stress as in Eq. 64, 

yields 

σ γ φ φ
γ
γh L
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−
−

−








( sin ) cos '1 1  ......................................................... (66) 

 

Note: the additive term in Eq. 66 for overconsolidation is independent of φ and y, 

predicting a constant value throughout the ground, when higher than the cohesion term. 

This constant value is very reasonable for clay when E '  is constant with depth. However, 

in practice the additive term for overconsolidation should start at a distance at least 

greater than y1 (the distance of tension in the ground). This is necessary since locked-in 

stresses cannot occur on the top surface. 

 

When repeating the analysis in a higher dimension, as in a circular or square plate with 

plane strain analysis, equation 66 is replaced by: 

σ γ φ φ
ν ν

γ
γh L

e c

i c

L

D

y c E
e e

e e
= − − +

−

− + −
−









( sin ) cos '

( )( )
1

1

1 1 2
1  ............................. (67) 

 

Eq. 67 is preferred than Eq. 66 since it is more realistic. 
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If defining OCR = + = +( ) / /σ σ σ σ σ0 1 0 1 01 , where σ0 is the initial stress γLy, and 

σ σ0 1+  is the initial plus the overburden stress, then the additive term can be expressed 

as: 

( )q y
e e

e e
K

e e

e e

e c

i c

e c

i c

h( ) =
−

−
=

−

−
−0 1 1σ σOCR  ................................................................ (68) 

 

where σh is of Eq. 64. Substituting Eq. 68 in Eq. 66 to replace the additive term yields: 
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e c

i c

y c y c
e e

e e
= − − + − −

−

−









 −( sin ) cos ( sin ) cos1 1 1OCR .................. (69) 

and 
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OCR  ...................................................... (70) 

 

Eq. 70 indicates K0c varies linearly with OCR for a constant expansion to compression 

deflection ratio independent of OCR, and for a given initial stress γLy. If comparing Eq. 

70 with Brooker and Ireland, (1965) [2] for five clays, four clays gives a secant slope of 

0.075 (Chicago Clay, London Clay, Goose Lake Flour, and Weald Clay), and one clay 

gives 0.042 (Bearpaw Shale). This gives an expansion to compression deflection ratios of 

0.13, 0.11, 0.14, 0.12, and 0.06 respectively. This is a very reasonable expansion to 

compression deflection ratio ( ) / ( )e e e ee c i c− −  for clay. Thus, Eq. 70 appears to be a 

reasonable approximation. 
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Conclusion 

The mystery of why Jáky's equation agrees with experimental data is resolved. 

Furthermore, the established incipient shear failure mechanism in obtaining K0 should 

satisfy many engineers and scholars who believe K0 should not be related to failure 

parameters (φ & c), since no failure criterion seem to appear in the at rest condition. 

Additionally, the incipient shear failure mechanism offers solutions for other problems 

besides K0. Variational method has been used in the analysis to obtain a closed form 

solution for K0 for sand. The methods are classical and conventional and only practical 

assumptions were used. The extremum condition indicates the existence of two slip 

surfaces back to back. If using a line approximation with the same boundary condition the 

result is identical to Jáky's equation. On the other hand if using the closed form equation, 

the result is a slightly higher value for K0. The derived K0 is in excellent agreement with 

experimental results and matches safety factor recommendations for Jáky's K0. The 

corresponding slip surfaces are in excellent agreement with rigid reinforced earth walls. 

The analysis was carried out further to establish physical criterion and equations for 

overconsolidating sand. The result is in fair agreement with experiments and shows the 

different parameters influencing the locked-in forces. Finally, the analysis is repeated for 

deriving K0 for normal and overconsolidating clay. The slip surface used is approximate, 

but gives a reasonable approximation for K0. The results are in good standing with 

experiments. The derived equations were used to determine the tension zone distance in 

clay. This distance is one half the active distance and is very reasonable. In general, in 

clay, K0 is not constant with depth as apparent in the results. The paper offers the real K0 

with a high confidence factor. However, further experiments and research are necessary 
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to verify the many consequences of using variational methods. The following are 

recommended experiments and research: 

 

1) Experiment to verify the tension zone distance in clay. 

2) Experiment to verify the effect of c in K0 in clay. 

3) Further research is needed in overconsolidating clay since the additive term related to 

OCR is shown experimentally non-linear indicating the expansion to compression 

deflection ratio is dependent on OCR. 

 

The derivation can be readily extended for a slanted wall with a sloped soil on surface. 

This in turn prepares the way for dynamic analysis. The theory can also be extended for 

multi-layers of different soils in the ground. The equations derived in this manuscript are 

expected to be used in a wide variety of engineering practice. 
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Appendix II.- Notation 

             The following symbols are used in this paper: 

 

α = angle of the failure wedge, or of failure a slice, with the horizontal; 

α0 = slice wedge angle with the horizontal at start of first slip surface at x = 0; 

αm = slice wedge angle with the horizontal at end of second slip surface; 

αn = slice wedge angle at end of first slip surface or start of second slip surface; 

c = cohesion in clay; 

c' = adhesion on the slice boundary; 

D = x - term used in experimental paper by others; 

∆ = axial deflection of a beam; 

δδδδ = Coulomb friction, directional frictional angle between dEx and dEy; 

δ0 = directional angle at first slice boundary at x = 0 = incipient shear angle; 

δi = directional angle at slice boundary at x; 

δm = directional angle at last slice boundary at x = xm = incipient shear angle; 

δn = directional angle at slice boundary at x = xn; 

E = elastic modulus of beam; 

E '  = spring modulus of soil; 

E0 = directional force of first slice boundary at x = x0; 
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Eh = horizontal force at rest; 

∆Eh = change in horizontal force; 

Ei = directional force of slice boundary at x; 

Em = directional force of last slice boundary at x = xm; 

En = directional force of slice boundary at x = xn;  

dEx = slice horizontal resultant force; 

dEy = slice vertical resultant force; 

dE y  
 

= resultant of vertical force on a slice separate from slice adhesion; 

ec = compressed void ratio at full load; 

ee = expansion void ratio at rebound or at load removal; 

ei = initial voids ratio at loose state; 

F = immobile friction force; 

∆F = change in immobile friction force; 

φ = angle of internal friction of soil; 

γ = soil unit weight; 

γD = unit weight of soil at dense state or at rebound state; 

γL = unit weight of soil at loose state or initial state; 

H = y - term used in experimental paper by others; 

h = mathematical coefficient in the slip surface equations; 

h' = mathematical coefficient in the slip surface equations related to h; 

i = integer counter; 

Κ = coefficient of lateral earth pressure or lateral stress ratio; 
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K0 = at rest earth pressure coefficient; 

K0 = additive term for the coefficient of earth pressure for cohesion; 

K0c = coefficient of lateral earth pressure at rest for overconsolidation; 

K1 = dimensionless coefficient representing a term in an equation; 

Ka = active earth pressure coefficient; 

Kp = passive earth pressure coefficient; 

kh = ( / )[( ) / ( )]n e e e eh D e c i cγ − − ; 

L = length of beam; 

m = integer; 

Mx = total moment of the horizontal forces of all the slices; 

My = total moment of the vertical forces of all the slices; 

ν = Poisson's ratio; 

N = normal force; 

∆N = change in normal force; 

n = integer; 

nh = subgrade modulus of sand; 

OCR = overconsolidation ratio; 

P = locked-in force in a beam; 

P1 = downward shear force on wall; 

P2 = upward shear force on wall; 

dQ = reactive force on bottom of failure wedge or slice to maintain equilibrium; 

q = uniform surcharge pressure; 
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q(y) = unknown horizontal stress for overconsolidation; 

q0(y) = uniform surcharge load that causes locked-in force in a beam; 

qc(y) = prehistoric surcharge; 

ℜ = calculus of variation function of mixed variables representing the integrand; 

r = correlation number; 

S/H = x/y0 - term used in experimental paper by others; 

Su = undrain shear strength for short term loading; 

σ0 = initial stress = γLy - in overconsolidations; 

σ1 = overburden stress in overconsolidations; 

σh = the horizontal stress in soil; 

σv = the vertical stress in soil; 

T = incipient shear; 

W = vertical force from weight of wedge; 

dW = weight of slice; 

dw  = weight of slice times tanα; 

Ω = dimensionless variable = x/y0; 

x = coordinate x-axis; 

dx = width of slice's wedge; 

′x  = dx/dy; 

xm = distance to tip of second slip surface; 

ψ = dimensionless variable = y/y0; 

y = coordinate height at y-axis; 
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dy = height of slice's wedge; 

′y  = dy/dx; 

y0 = height of wall or start of first slip surface at x = 0; 

y1 = tension zone distance in clay; 

y2 = distance from the top surface to where the overconsolidation stress starts; 

ym = height distance at end of second slip surface; 

yn = height distance at end of first slip surface or start of second slip surface; 

Z/H = y/y0 - term used in experimental paper by others; 

dz = beam thickness; 

 

 

Appendix III.- Numerical Check 

 

      With the advent of software technology, numerical differentiation and integration 

easily has become easier. Algebra can be checked from one equation to a reduced 

equation by numerical substitution to give identical values. Many software programs are 

available to do the checking. All of the derived equations were checked with MATHCAD 

on a personal computer, including starting with the variational (Euler equation). The 

following constants' relations are necessary if the reader needs to double-check the 

writer: 

Eq. 22 .................................................................... h
h

'
sin cos

= −
2γ φ φ

; 

 



 50 

and 

Eq. 34 .................................................................... h
h

'
sin

=
2 2γ φ

. 

Note: when using Sherif's expression their recommendations were to use γD and K0 =  

1 - sinφ  for calculating the forces and the stresses. This effects the comparison slightly. 

Analysis shows the average kh = 5.87 instead 5.5 in the region 32 < φ < 44 degrees and 

1.03 <  γD/γL < 1.07. The analysis used K0 from Eq. 46 and used γL in calculating the 

forces and the stresses. 


