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General Solution for symmetry Case I: 

Staring with Eq. 37 and 38 pp 39 and Eq 102 pp 81 from “Theory of Plates 

and Shells” by Timoshenko and Woinowsky-Krieger we have: 
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Where f(x + y) is a function to be found, in here we assume symmetry and 

the moments are a function on x + y only. 

 

As a result we have 
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Let m = x + y and substitute in Eq. 2 we have: 
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The solution of Eq. 4 from before: 
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From Timosheko Eq81 pp100 we have: 
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Where MT+ is the total moment on the plate segment 

 

Substituting Eq. 7 in Eq. 8 and rearranging we have: 
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Let: 

 

∫ += 1)(5.0 Cdmmfu   …….…………………………………..………. (10) 

 

And integrate Eq. 9 with respect to n yields: 

 

dm
D

mM

u

u
u T∫ +

−=
−









+
−

+ +

)1(2

)(

11

1

2 νν
ν

 ………………………………………. (11) 

 

Eq. 11 is a Quartic equation in u and has four roots, two are for coordinates 

(x, y) and (y, x) and the others are possibly imaginary. 

 

And the solution is found numerically by substituting back in Eq. 5, 6 and 7. 

An alternative preferred solution for Eq. 11 can be found by expressing in  

yx www ==& . Rewriting Eq. 6 to 
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Substitute Eq.12 in Eq. 11 yields: 
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Let θtan=w& , so it is defined everywhere, and substitute in Eq. 13 yeilds 
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Equation 14 has two basic roots in θ and the rest are differs by 2π multiples. 

 

Thus w& of Eq. 13 has only two real roots for coordinates (x, y) and (y, x). 

 

General Solution for axi-symmetry Case II: 

Changing Eq. 2 to a function on x – y , thus 
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Where g(x - y) is a function to be found, in here we assume axi-symmetry 

and the moments are a function on x - y only. 

 

As a result we have 
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Let n = x - y and substitute in Eq. 15 we have: 
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The solution of Eq. 17 from before: 
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From Timosheko Eq81 pp100 we have: 
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Where MT- is the total moment on the plate segment 

 

Substituting Eq. 19 in Eq. 21 and rearranging we have: 
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Let: 
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And integrate Eq. 22 with respect to n yields: 
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Eq. 24 is a Quartic equation in v and has four roots, two are for coordinates 

(x, -y) and (y, -x) and the others are possibly imaginary. 

And the solution is found numerically by substituting back in Eq. 18, 19 and 

20.  

 

An alternative preferred solution for Eq. 24 can be found by expressing in  

yx www −==& . Rewriting Eq. 19 to 
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Substitute Eq.25 in Eq. 24 yields: 
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Let θtan=w& , so it is defined everywhere, and substitute in Eq. 13 yeilds 

 

dn
D

nM T∫ +
=








+
−

+ −

)1(2

)(
tan

1

1
sin

ν
θ

ν
ν

θ  …………………………………….. (27) 

 

Equation 27 has two basic roots in θ and the rest are differs by 2π multiples. 

 

Thus w& of Eq. 26 has only two real roots for coordinates (x,- y) and (y,- x). 

 

General Solution for Case III: 

Changing Eq. 2 to a function on ax + by , thus 
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Where h(ax + by) is a function to be found, in here we assume the moments 

are a function on ax + by only. 

 

As a result we have 
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Let t = ax + by and substitute in Eq. 2 we have: 
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From Timosheko Eq81 pp100 we have: 
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Where MT is the total moment on the plate segment 

 

Substituting Eq. 31 in Eq. 32 and rearranging we have: 
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Equation 37 has two basic roots in θ and the rest are differs by 2π multiples. 

Thus w& of Eq. 35 has only two real roots for coordinates (x/a, y/b) and  

(y/a, x/b). 

 

General Solution Case IV: 

The following is the general solution for vertical loads on the plate without 

buckling in the Cartesian coordinates using Taylor’s and Fourier’s 

representation. 

 

We start by rewriting the partial differential (Eq. 100 pp81 Timoshenko and 

Woinowsky-Krieger book using Eq. 37, 35 and Eq. 102 pp81) as follows: 
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Eq. 38 can be written as: 
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Let us express w with an accurate approximation using Taylor expansion 

polynomial over the intervals byax ≤≤≤≤ 0   and   0 for a rectangular portion 

of the plate (this representation has to exist since we are not assuming plates 

deflecting to infinity and from physics for every load there is a unique 

deflection to be guaranteed in the elastic realm giving a certain bounded 

function over that portion of the plate. Thus, the function can be represented 

by a Taylor expansion polynomial using Taylor theorem with unique 

coefficients for every load) so: 
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Now express wx, wy, g(x,y), h(x,y), q(x,y) and in Fourier’s representation over 

the interval byax ≤≤≤≤ 0   and   0 for a rectangular portion of the plate in 

Cartesian coordinates as follows: 
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Even though these are not a full representation of a Fourier series these 

functions will give exact values in the intervals byax ≤≤≤≤ 0   and   0 . 

By substituting Eq. 47 through 51 in Eq. 39 and differentiating when it is 

required yields: 
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Equating terms result in the following equation to be satisfied: 
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Equation 58 is to be equated term by term for every m = 1, 2, 3, 4,…. and n 

= 1, 2, 3, 4,….. Thus the solution can be achieved by selecting a set of 

coefficients pjk for j = 1, 2, 3, …., r and k = 1, 2, 3, …., t and for an 

acceptable set of n and m then integrate Eq. 52 through 56 numerically with 

an acceptable accuracy and see if Eq. 58 is satisfied for every n and m. If it is 

not satisfied then updated pjk with an acceptable conversion algorithm such 

as Newton Raphson Method with the Jacobian matrix. As we said before 

there is one deflection per load thus the coefficient pjk must be unique, thus 

there is one root for the solution of Eq. 58. The initial vector pjk can be taken 

by letting g(x,y) = wx and h(x,y) = wy so that the result gives the solution for 

small deflections as a start (see Timoshenko Eq 101, 102 pp81) this makes 

Eq. 58: 
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It is seen that this becomes a matrix inversion for pjk if jk = mn and the 

matrix to be inverted is an (mn) x (mn) inverted matrix. All of the 

coefficients of the left of Eq. 52 to 55 can be evaluated exactly without 

numerical integrations. The proposed general solution promises to be exact 

for an acceptable accuracy for the deflection. In the real world depending on 

the application there always a defined acceptable tolerance set by the 

engineer. 

 

To control this tolerance it is best to represent Eq. 40 as follows: 
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When b > a, this is done in order to have a more conversion series with a 

good representation of the deflection for 10   and   10 ≤≤≤≤
b

y

a

x
. 
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Boundary Condition: 

The boundary condition of the plate at the edges or internally can be 

achieved by selecting a conversion series for Eq. 60 that satisfies the 

boundary conditions for any set of j and k. This will become evident the 

following application examples. 

 

Section 1: 

A. Clamped Rectangular Plate at the boundary edge: 

By inspection at x = 0 and x = a Eq. 60 must have a root at x = 0 and x = 

a to have zero deflections. Also for a clamped plate wx = 0 at x = 0 and x 

= a so Eq. 60 must have another root at x = 0 and x = a to have zero 

slopes. This can also be said for the boundaries at y and Eq. 60 can be 

written as: 
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Thus wxx and wyy can be written as: 
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Using Eq. 62 and 63 we can find the moments at boundary knowing the 

slopes are zero at the boundary such that 1/rx = -wxx at x = 0 etc. and the 

moments becomes: 
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We can see from Eq. 64 and 65 that the moments on the boundaries are 

different functions with different coefficients pjk and Eq. 61 is a 

representation of a clamped plate. 
  

B. Clamped Rectangular Plate at the boundary edge and symmetric 

load: 

 

For a symmetric load we first translate the deflection to the center of the 

plate and look at the deflection we have: 
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Where Taylor expansion is done on x
2
 and y

2
 to obtain symmetry and the 

roots at 
2

  and  
2

b
y

a
x ±=±=  satisfied the boundary conditions. When 

translating back to a corner of the plate Eq. 66 becomes: 
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And the moments becomes: 
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And we show symmetry in the moments. 

 

Now we seek the moments at x = a/2 and y = b/2. First we find wxx and wyy 

from Eq. 67 as follows: 
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Substitute x = a/2 and y = b/2 in Eq. 70 yields: 
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Since wx = wy = 0 at x = a/2 and y = b/2 the moments at the center becomes: 
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For a square plate a = b then w is the same for the coordinate (x,y) and (y,x) 

then j=k and we can write pjk = pkj = pjj = pj and substitute in Eq. 67 yields: 
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C. Clamped Rectangular Plate with a Clamped ellipse Built in the center  

See Fig. 1 

 
Fig. 1- Clamped Rectangular Plate with a Clamped ellipse Built in the center 
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By inspection at x = 0 and x = a Eq. 60 must have a root at x = 0 and x = 

a and at the contour of the ellipse to have zero deflections. Also for a 

clamped plate wx = 0 at x = 0 and x = a and at the contour of the ellipse so 

Eq. 60 must have another root at x = 0 and x = a and at the contour of the 

ellipse to have zero slopes. This can also be said for the boundaries at y 

and Eq. 60 can be written as Eq. 61 with the ellipse contour: 
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One can see Eq. 76 can be expanded to give another expression on Taylor 

polynomial and the solution can be obtained. 

 

D. Clamped Triangular Plate: 

 

Similar to what we have done before by inspection at x = 0 and y = 0 and 

at the edge of triangle Eq. 60 must have a root at x = 0 and y = 0 and at 

the edge of triangle (see Fig 2) to have zero deflections. Also for a 

clamped plate wx = 0 at x = 0 and at the edge of triangle wy = 0 at y = 0 

and at the edge of triangle then Eq. 60 must have another root at x = 0 

and y = 0 and at the edge of triangle to have zero slopes and Eq. 60 can 

be written as: 
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Fig. 2- Clamped Triangular Plate all sides 

 

One can see Eq. 77 can be expanded to give another expression on Taylor 

polynomial and the solution can be obtained. 

 

E. Two Side Clamped Rectangular Plate with a Clamped ellipse Built at 

the edge 

 

Similar to what we have done before by inspection at x = 0 and y = 0 and 

at the edge of the ellipse Eq. 60 must have a root at x = 0 and y = 0 and at 

the edge of the ellipse (see Fig 3) to have zero deflections. Also for a 

clamped plate wx = 0 at x = 0 and at the edge of the ellipse wy = 0 at y = 0 

and at the edge of the ellipse then Eq. 60 must have another root at x = 0 

and y = 0 and at the edge of the ellipse to have zero slopes and Eq. 60 can 

be written as: 
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Fig. 3- Clamped Plate all sides 

 

One can see Eq. 78 can be expanded to give another expression on Taylor 

polynomial and the solution can be obtained. 

 

F. Two Side Clamped Rectangular Plate with a Clamped Polynomial 

Curve Built at the edge 

 

Similar to what we have done before by inspection at x = 0 and y = 0 and 

at the edge of the curve Eq. 60 must have a root at x = 0 and y = 0 and at 

the edge of the curve (see Fig 4) to have zero deflections. Also for a 

clamped plate wx = 0 at x = 0 and at the edge of the curve wy = 0 at y = 0 

and at the edge of the curve then Eq. 60 must have another root at x = 0 

and y = 0 and at the edge of the curve to have zero slopes and Eq. 60 can 

be written as: 
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Where the curve is represented as polynomial: 
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Fig. 4- Clamped Plate all sides 

 

One can see Eq. 79 and Eq. 80 can be expanded to give another 

expression on Taylor polynomial and the solution can be obtained. 

 

G. Discussion on Simple span and Clamped Plates with Large 

Deflection: 

 

Clamped plates are basically simple supported plate with a specific 

moment at the edge that make the slopes at the edge flat or zero. If there 

is large deflection on such a plate where the plate is unattached to its 

support, and the plate a little oversized over the support, then large 

deflection will cause the plate to deflect enough at the edges of the plate 

to loose its support at the edge, where the friction at the support due to 

the vertical load is ignored, (assumed smooth). This can happen when the 

bending stresses in the plate did not reach failure, which is the case in 

most thin plates, see Fig. 5 for a rectangular plate. Because the plate is 

clamped this problem of loosing support at the edge is not likely to 

happen in reality but it is more likely for an unattached simple supported 

plates where the friction at support due to the vertical load is ignored, 

assumed smooth. (This can happen in addition to reverse deflection 

vertically in section of the support, see Section 3 for dealing with this 

problem) However, the above solution offers to solve various clamped 

plate problems that has not been solved before and if large deflection is 
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not an issue then the initial value of Eq. 59 is sufficient for solution 

which requires only one matrix inversion.  

 

We give the equations for loosing supports for a symmetric loading on a 

rectangular plate with any edge condition as follows: 
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Fig. 5 – loss of support in a plate 

Section 2: 

 

A. Rectangular Simply Supported Plate: 

 

By inspection at x = 0 and x = a Eq. 60 must have a root at x = 0 and x = 

a to have zero deflections. This can also be said for the boundaries at y 

and Eq. 60 can be written as: 
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Thus wx and wy can be written as: 
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Thus wxx and wyy can be written as: 
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Using the equation for finding the moments at the edges we write: 
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When solving the two equation for 1/rx = 0 and 1/ry = 0 at x = 0 and x = a, 

we see the only way Eq. 87 is satisfied is when 
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We can see that is true already by substitution in Eq. 85 and Eq. 86 that: 
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Thus set p0k = p1k  in the polynomial of Eq. 82 and the condition is 

satisfied. 
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Similarly for y = 0 and y = b we have the condition: 
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Thus when selecting these coefficients of Eq. 92 and 93 and substituting 

in Eq. 82 the boundary condition are satisfied. 

 

B. Simple Suported Rectangular Plate at the boundary edge and 

symmetric load: 

 

For a symmetric load we first translate the deflection to the center of the 

plate and look at the deflection we have: 
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Where Taylor expansion is done on x
2
 and y

2
 to obtain symmetry and the 

roots at 
2

  and  
2

b
y

a
x ±=±=  satisfied the boundary conditions. When 

translating back to a corner of the plate Eq. 94 becomes: 
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And wx and wy becomes: 
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And wxx and wyy becomes: 
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As before we require 0   and   0 00 ==
=
=

=
=

by
yyy

ax
xxx ww . From Eq. 98 and Eq. 99 we 

must have: 

 

pj0 = - pj1 and p0k = - p1k  …………………………………………. (100) 

 

Thus when selecting these coefficients and substituting in Eq. 94 the 

boundary condition are satisfied. 

 

Now we seek the moments at x = a/2 and y = b/2. First we find wxx and wyy 

from Eq. 98 and Eq. 99 and using Eq. 100 yields: 
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Since wx = wy = 0 at x = a/2 and y = b/2 the moments at the center becomes: 
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For a square plate a = b then w is the same for the coordinate (x,y) and (y,x) 

then j=k and we can write pjk = pkj = pjj = pj and substituting in Eq. 95 yields: 
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Many other boundary conditions can be satisfied with finding the proper 

Taylor series expansion. One more conditions will be addressed for the case 

of a rectangular plate with one free edge and the others are clamped edge. 
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Section 3: 

 

A. Three Sided fixed rectangular Plate and one free edge: 

 

Consider Fig 6.  

 

 
Fig. 6 Three sides clamped one side free 

 

The function x = z(y) is the final deflection of the free edge and can be 

expressed with an accurate approximation by Taylor polynomial as follows: 
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And as before the deflection can be written as 
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We enforce the boundary condition of the moments: 

 

y 

x 

(a,b) 

x = z(y) 
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And the length of the plate at any y as: 
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Which makes the solution complicated, but the solution can be enforced a 

certain coordinates by taking a set of known yi say (for example dividing b 

to increments b/T and yi = ib/T , i = 0, 1,2, ..)   then each Eq 106 and 107 is a 

set of i equations to add more equations to Eq. 58 and the algorithm of 

finding pjk also finds Ai. Once Ai is found Eq. 106 and 107 can be used to 

verify the accuracy of other points beside yi. 

 

Non-Prismatic Plates 

 

If we have a set of square plates with different thickness welded or attached 

together to make one big plate (where the perimeter can have triangular 

plates if needed) then we need to match the slope and deflection around each 

plate. This can be done by matching a set of points xi and yi for the function 

x = z1(y), y = z2(x) at the perimeter similar to the last example. Even though 

this starts to look like finite element it is a much better representation to 

include large deflection and more accurate. 

 

 

General Solution using Point Loads and Moments: 

 

Before giving the general solution with point loads and a moment at the 

point of application we will review the above solution using a one 

dimensional beam simply supported with no large deflection. 

 

Let us use a set of Taylor polynomial to approximate the analysis for a 

simply supported beam with any loading see Fig. 7 
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FIG 7. Simple Span Beam 

 

Expressing the load q(x) in Fourier Series yields, 
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Now we pick Taylor series y(x) that satisfies the boundary condition. Thus 

the series must have a root at x = 0 and x = L and 

0)(    and  0)(
00

====
==== LxLxxx

yxMyxM &&&&  

 

We will show the behavior of the solution for a 5
th
 , 6

th
 , 7

th
 , 8

th
 and 9

th
 order 

polynomial and compare the results. We find the following equation satisfies 

the boundary condition: 
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6
th
 order: 
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7
th
 order: 
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8
th
 order: 
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9
th
 order: 
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Where 7654321    and  ,,,,, kkkkkkk  are constants to be found. Now following the 

proposed solution we express the equation for the slope in Fourier series as: 
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When integrating Eq. 109, 110, 111, 112 and 113 using Eq. 114 then 

differentiating three time to get the pressure and equating to Eq. 108 we 

obtain a set linear system of equations in ki. When inverting the matrix for 

each polynomial equation we obtain the following solutions: 
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5
th
 order: 

 

 k1    0 -0.052359878    a1/2  

   =         

  k3    -0.130899694 -0.087266463    a2/2  

                                                                                  ………………………….. (115) 

 

6
th
 order 

 

 k1    -0.024223654 0 0.072670961    a1/2  

 k2  =  0.072670961 -0.052359878 -0.218012883    a2/2  

 k4    -0.104755807 -0.087266463 -0.078431662    a3/2  

                                                                                …………………………… (116) 

 

7
th
 order 

 

 k1    -5.0307E-17 0.06562175 -5.55112E-17 -0.131243499    a1/2  

 k2  =  -0.024223654 -0.229676124 0.072670961 0.459352247    a2/2  

 k3    0.072670961 0.247129416 -0.218012883 -0.598978587    a3/2  

 k5    -0.104755807 -0.047469887 -0.078431662 -0.079593151    a4/2  

                                                                                …………………………… (117) 

 

8
th
 order 

 

 k1    0.004447133 0 -0.180108893 1.249E-16 0.277945823    a1/2  

 k2    -0.017788533 0.06562175 0.720435572 -0.131243499 -1.11178329    a2/2  

 k3  =  0.003812983 -0.229676124 -1.062812804 0.459352247 1.752289761    a3/2  

 k4    0.050820917 0.247129416 0.66691391 -0.598978587 -1.365627767    a4/2  

 k6    -0.106136585 -0.047469887 -0.022510129 -0.079593151 -0.086298663    a5/2  

                                                                                ……………………………. (118) 

 

9
th
 order 

 
 k1    2.7452E-16 -0.040478794 -5.35683E-15 0.518128567 9.13158E-15 -0.655756467    a1/2  

 k2    0.004447133 0.182154574 -0.180108893 -2.331578551 0.277945823 2.950904103    a2/2  

 k3  =  -0.017788533 -0.269531601 0.720435572 4.158719394 -1.11178329 -5.429484287    a3/2  

 k4    0.003812983 0.093305925 -1.062812804 -3.674817977 1.752289761 5.23230919    a4/2  

 K5    0.050820917 0.074523349 0.66691391 1.610379068 -1.365627767 -2.796218283    a5/2  

 k7    -0.106136585 -0.053491716 -0.022510129 -0.002513738 -0.086298663 -0.097553632    a6/2  

                                                                               ……………………………… (119) 
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Now we investigate several loading condition: 

 

1- Expressing the loading of Fig. 8 in Fourier Series yields, 

 

 
FIG 8. Partial Load on a Simple Span Beam 
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Substituting in Eq.  115, 116 117, 118 and Eq. 119, and graphing the results 

for c = .7 yields Fig 11A and Fig 11B; Table 1 shows the results in 

comparing with the exact solution. 
 

2- Expressing the loading of Fig. 9 in Fourier Series to obtain the pressure 

for a point load yields, 
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FIG 9. Load on Simple Span Beam to be converted to Point Load 

 

Let the point load P = 2ε q which is the load under q and substitute for q in 

Eq. 122 

Thus 
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Let ε go to zero and we get the pressure representing a point load as follows: 
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Thus: 
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Substituting in Eq.  115, 116 117, 118 and Eq. 119, and graphing the results 

for c = .3 yields Fig 12A and Fig 12B; Table 2 shows the results in 

comparing with the exact solution. 
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3- Expressing the loading of Fig. 10 in Fourier Series to obtain the pressure 

for a moment yields, 
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FIG 10. Load on Simple Span Beam to be converted to a Moment 

 

Let the moment M = 0.5ε (ε q) + 0.5ε (ε q) = qε2 which is the moment for 

loading in Fig. 10, and substitute for q in Eq. 126 
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Let ε go to zero and we get the pressure representing a Moment as follows: 
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Thus: 
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Substituting in Eq.  115, 116 117, 118 and Eq. 119, and graphing the results 

for c = .5 yields Fig 13A and Fig 13B; Table 3 shows the results in 

comparing with the exact solution. 
 

All of the results shows Taylor approximation follows Fourier 

approximation and the error improves with adding higher term to Taylor 

polynomial.  

 

For the point load we can see that under the pressure ∞⇒
=cLxdx

dV
so the 

pressure approaches infinity under the load. This has happen because we 

approximated the actual shear, which is a discontinuous function, by a 

continuous function. As in the actual shear curve at that point the shear is 

never defined under the load
2
 since it has two values and the question 

becomes which value can we use. In practice the shear is always taken as 

( ))(,)(max δδ +− cLVcLV  for an appropriate incrementδ  whereδ can be found 

by testing for ultimate values around cL. Thus the solution for the shear is 

correct for all values except under the load and can be taken as 

( ))(,)(max δδ +− cLVcLV  of the approximate Taylor polynomial. If we have a 

load that has been approximated with many point loads then it is best to 

determine what shear value to use under the load based on design practice 

and represent Taylor polynomial approximation as a discontinuous function 

with point values under the load. If we differentiate the shear to obtain the 

pressure then the pressure under the load can not be determined using Taylor 

polynomial as a continuous function and should be taken 

)()( δδ +−−= cLVcLVP . 

 

                                                 
2
 The reason the actual shear diagram has discontinuity because it is telling us in real life there no such 

thing as a point load and in reality it is some kind of a pressure with some small ε around the load as 

in Fig 9. 
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Similarly from the moment diagram we can see that under the shear 

∞⇒
=cLxdx

dM
so the shear approaches infinity under the load. This has happen 

because we approximated the actual moment function, which is a 

discontinuous function, by a continuous function. As in the actual moment 

diagram at the point of application the moment is never defined under the 

moment
3
 since it has two values and the question becomes which value can 

we use. In design practice the two moment is always taken as M 
+
 and M 

-
 or 

)(  and  )( δδ +− cLMcLM  with their corresponding sign for an appropriate 

incrementδ  whereδ can be found by testing for ultimate values around cL. 

Thus the solution for the moment is correct for all values except under the 

point of application and can be taken as )(  and  )( δδ +− cLMcLM  of the 

approximate Taylor polynomial. Thus it is best to represent Taylor 

polynomial approximation as a discontinuous function with point values 

under the moment. If we differentiate the moment to obtain the shear then 

the shear under the load can not be determined using Taylor polynomial as a 

continuous function and should be taken [ ])()(
1

δδ +−−= cLMcLM
L

V . 

Finally if we differentiate the shear to obtain the pressure then the pressure 

under the load can not be determined using Taylor polynomial as a 

continuous function and should be taken zero. This can also be seen when 

using a slighted slanted line instead of a vertical line at the point of 

application, cL, in the moment diagram then differentiating twice to get the 

pressure resulting in a zero pressure. 

 

 

 

 

 

 

 

 

 

 

                                                 
3
 The reason the actual moment diagram has discontinuity because it is saying in real life there no such 

thing as a moment at a point of application and in reality it is some kind of a pressure with some small ε 
around the load as in Fig 10. For example if we try to put a moment using a pinion of a motor then in 

reality the pinion of the motor could never have a zero radius and the radius can only be as small as ε and 

transferring the load can only be possible by introducing some kind of a axis-symmetric pressure at the 

point of application from -ε ≤  x – cL  ≤  ε. 
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           Fifth Order Polynomial Approximation  

c/L ∆ error ∆ max M+ error M+ max 

  in graph error in graph Error 

1 0.000% 0.000% 0.000% 0.000% 

0.9 0.460% -0.065% 13.186% -0.456% 

0.8 1.014% -0.226% 19.070% -1.466% 

0.7 0.997% -0.362% 13.237% -2.413% 

0.6 0.908% -0.380% 8.817% -2.733% 

0.5 -0.206% -0.121% -18.672% -2.778% 

0.4 -2.342% 0.546% -55.590% -3.124% 

0.3 -3.906% 1.386% -86.714% -4.667% 

0.2 -6.173% 2.110% -113.532% -7.982% 

0.1 -11.445% 2.694% -131.784% -13.191% 

 

 

         Sixth Order Polynomial Approximation  

c/L ∆ error ∆ max M+ error M+ max 

  in graph Error in graph error 

1 0.000% 0.000% 0.000% 0.000% 

0.9 0.172% 0.007% 8.279% 0.129% 

0.8 0.086% 0.010% 1.442% 0.411% 

0.7 -0.162% -0.001% -8.481% 0.224% 

0.6 -0.579% -0.063% -23.860% -1.005% 

0.5 -0.206% -0.121% -18.672% -2.778% 

0.4 0.701% -0.011% 11.164% -3.744% 

0.3 0.854% 0.157% 41.860% -3.068% 

0.2 0.619% 0.351% 94.853% -2.854% 

0.1 -2.664% 0.458% 108.875% -5.160%  

      Seventh Order Polynomial Approximation  

c/L ∆ error ∆ max M+ error M+ max 

  In graph error in graph error 

1 0.000% 0.000% 0.000% 0.000% 

0.9 0.109% 0.007% 5.682% 0.129% 

0.8 0.059% 0.010% -1.893% 0.209% 

0.7 -0.240% -0.009% -14.604% 0.030% 

0.6 -0.207% -0.042% -6.521% -0.143% 

0.5 0.056% -0.026% 13.036% -0.544% 

0.4 0.525% 0.066% 34.944% -2.048% 

0.3 0.665% 0.076% 13.035% -3.706% 

0.2 -0.733% -0.042% -52.946% -2.450% 

0.1 -2.824% -0.228% -132.625% -1.674% 

 

 

         Eighth Order Polynomial Approximation 

c/L ∆ error ∆ max M+ error M+ max 

  in graph error in graph error 

1 0.000% 0.000% 0.000% 0.000% 

0.9 0.029% -0.001% 1.633% -0.032% 

0.8 -0.077% 0.002% -7.956% 0.035% 

0.7 -0.017% 0.007% -1.643% 0.315% 

0.6 0.133% -0.006% 15.180% 0.119% 

0.5 0.056% -0.026% 13.036% -0.544% 

0.4 -0.189% 0.013% -16.294% -0.840% 

0.3 -0.139% 0.045% -37.868% -2.273% 

0.2 0.511% -0.004% 13.571% -3.342% 

0.1 -0.249% -0.089% 106.610% -0.567%  

         Nineth Order Polynomial Approximation 

c/L ∆ error ∆ max M+ error M+ max 

  in graph error in graph Error 

1 0.000% 0.000% 0.000% 0.000% 

0.9 0.013% -0.001% 0.679% -0.032% 

0.8 -0.062% 0.002% -6.709% 0.022% 

0.7 -0.001% 0.003% 4.628% 0.089% 

0.6 0.112% -0.006% 13.019% 0.161% 

0.5 -0.026% -0.008% -11.967% 0.054% 

0.4 -0.160% 0.015% -21.158% -0.856% 

0.3 0.090% 0.005% 24.438% -1.102% 

0.2 0.413% -0.014% 27.563% -2.976% 

0.1 -0.496% 0.014% -83.283% -0.589% 

 

TABLE 1 – TAYLOR APPROXIMATION FOR A RECTANGULAR PRESSURE 
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Fith Order Polynomial Approximation
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FIGURE 11A – TAYLOR APPROXIMATION FOR A RECTANGULAR  

PRESSURE c/L = .7 
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Eighth Order Polynomial Approximation
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FIGURE 11B – TAYLOR APPROXIMATION FOR A RECTANGULAR  

PRESSURE c/L = .7 
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          Fifth Order Polynomial Approximation 

c/L ∆ error ∆ max M+ error M+ max 

  in graph error in graph error 

~1.0 -16.04% 2.90% 39.90% -18.51% 

0.9 -8.34% 2.49% -125.4% -14.59% 

0.8 -4.05% 1.43% -90.02% -12.81% 

0.7 1.04% 0.00% 7.15% -14.98% 

0.6 3.82% -1.25% 49.74% -19.15% 

0.5 2.85% -1.83% 31.69% -21.46% 

0.4 3.82% -1.25% 49.74% -19.15% 

0.3 1.04% 0.00% 7.15% -14.98% 

0.2 -4.05% 1.43% -90.02% -12.81% 

0.1 -8.34% 2.49% -125.4% -14.59%  

       Sixth Order Polynomial Approximation  

c/L ∆ error ∆ max M+ error M+ max 

  in graph error In graph error 

~1.0 -6.80% 0.52% 99.55% -9.96% 

0.9 -0.17% 0.42% 107.2% -7.81% 

0.8 1.45% 0.19% 37.58% -11.17% 

0.7 1.47% -0.05% 14.78% -15.09% 

0.6 -1.40% -0.20% -69.30% -13.36% 

0.5 -1.06% -0.32% -47.81% -11.53% 

0.4 -1.40% -0.20% -69.30% -13.36% 

0.3 1.47% -0.05% 14.78% -15.09% 

0.2 1.45% 0.19% 37.58% -11.17% 

0.1 -0.17% 0.42% 107.2% -7.81%  
  

    Seventh Order Polynomial Approximation  

c/L ∆ error ∆ max M+ error M+ max 

  in graph error in graph error 

~1.0 -6.95% -0.32% -165.9% -5.24% 

0.9 -1.34% -0.15% -93.22% -5.87% 

0.8 1.78% 0.14% 43.16% -11.51% 

0.7 1.22% 0.20% 80.64% -9.92% 

0.6 -1.02% -0.07% -34.31% -9.79% 

0.5 -1.06% -0.32% -47.81% -11.53% 

0.4 -1.02% -0.07% -34.31% -9.79% 

0.3 1.22% 0.20% 80.64% -9.92% 

0.2 1.78% 0.14% 43.16% -11.51% 

0.1 -1.34% -0.15% -93.22% -5.87%  

                   Eighth Order Polynomial Approximation 

c/L ∆ error ∆ max M+ error M+ max 

  in graph error In graph error 

~1.0 -3.48% -0.13% 120.96% -2.20% 

0.9 0.38% -0.05% 54.91% -6.12% 

0.8 0.24% 0.08% -57.52% -8.93% 

0.7 -0.77% 0.06% -56.46% -7.82% 

0.6 0.03% -0.02% 27.46% -9.31% 

0.5 0.62% -0.11% 61.32% -7.85% 

0.4 0.03% -0.02% 27.46% -9.31% 

0.3 -0.77% 0.06% -56.46% -7.82% 

0.2 0.24% 0.08% -57.52% -8.93% 

0.1 0.38% -0.05% 54.91% -6.12%  
  

       Nineth Order Polynomial Approximation 

c/L ∆ error ∆ max M+ error M+ max 

  in graph error in graph error 

~1.0 -3.39% 0.04% -159.99% -0.27% 

0.9 0.88% -0.01% 27.14% -6.67% 

0.8 0.57% -0.02% 83.81% -6.32% 

0.7 -0.82% 0.06% -59.73% -7.85% 

0.6 -0.17% 0.02% -27.51% -6.86% 

0.5 0.62% -0.11% 61.32% -7.85% 

0.4 -0.17% 0.02% -27.51% -6.86% 

0.3 -0.82% 0.06% -59.73% -7.85% 

0.2 0.57% -0.02% 83.81% -6.32% 

0.1 0.88% -0.01% 27.14% -6.67%  
 

TABLE 2 – TAYLOR APPROXIMATION FOR POINT LOAD 
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FIGURE 12A – TAYLOR APPROXIMATION FOR A POINT LOAD c/L = 0.3 
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Eighth Order Polynomial Approximation
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FIGURE 12B – TAYLOR APPROXIMATION FOR A POINT LOAD c/L = 0.3 
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           Fifth Order Polynomial Approximation 

c/L ∆ error ∆ max M+ error M+ max 

  In graph error in graph Error 

1 0.332% 2.902% 83.868% -18.512% 

0.9 0.151% 1.661% 40.283% -17.811% 

0.8 0.254% -1.399% 55.860% -31.887% 

0.7 0.309% -4.884% 47.294% -40.817% 

0.6 0.264% -4.998% 48.623% -31.742% 

0.5 0.147% 0.399% 43.398% -33.510% 

0.4 0.264% -4.998% 48.623% -62.579% 

0.3 0.309% -4.884% 47.294% -40.817% 

0.2 0.254% -1.399% 55.860% -31.887% 

0.1 0.151% 1.661% 40.283% -94.090%  

         Sixth Order Polynomial Approximation 

c/L ∆ error ∆ max M+ error M+ max 

  in graph error in graph Error 

1 0.151% 0.522% 75.343% -9.961% 

0.9 0.058% 0.281% 51.503% -15.179% 

0.8 0.158% 0.232% 47.402% -24.721% 

0.7 0.110% 0.559% 41.877% -18.679% 

0.6 0.127% -1.231% 47.297% -28.493% 

0.5 0.147% 0.399% 43.398% -33.510% 

0.4 0.127% -1.231% 47.297% -10.201% 

0.3 0.110% 0.559% 41.877% -34.831% 

0.2 0.158% 0.232% 47.402% -24.721% 

0.1 0.058% 0.281% 51.503% -15.179%  
  

       Seventh Order Polynomial Approximation  

c/L ∆ error ∆ max M+ error M+ max 

  in graph Error in graph Error 

1 0.081% -0.316% 66.387% -5.242% 

0.9 0.069% 0.161% 53.720% -15.743% 

0.8 0.066% 0.736% 39.077% -13.072% 

0.7 0.079% 0.089% 46.368% -18.872% 

0.6 0.086% 0.535% 41.161% -17.692% 

0.5 0.058% 4.890% 39.290% -13.703% 

0.4 0.086% 0.535% 41.161% -27.868% 

0.3 0.079% 0.089% 46.368% 20.425% 

0.2 0.066% 0.736% 39.077% -13.072% 

0.1 0.069% 0.161% 53.720% -15.743%  

        Eighth Order Polynomial Approximation 

c/L ∆ error ∆ max M+ error M+ max 

  in graph error in graph Error 

1 0.048% -0.129% 57.357% -2.197% 

0.9 0.055% 0.089% 50.047% -12.985% 

0.8 0.033% 0.214% 40.231% -9.766% 

0.7 0.064% 0.454% 42.343% -14.350% 

0.6 0.044% 0.793% 39.084% -10.916% 

0.5 0.058% 4.890% 39.290% -13.703% 

0.4 0.044% 0.793% 39.084% -1.588% 

0.3 0.064% 0.454% 42.343% -1.590% 

0.2 0.033% 0.214% 40.231% -9.766% 

0.1 0.055% 0.089% 50.047% -12.985%  
 
 

 

Nineth Order Polynomial Approximation 

c/L ∆ error ∆ max M+ error M+ max 

  in graph error in graph error 

1 0.030% 0.041% 48.529% -0.266% 

0.9 0.036% -0.075% 45.368% -8.437% 

0.8 0.040% 0.091% 43.348% -11.052% 

0.7 0.031% 0.447% 36.371% -6.827% 

0.6 0.046% 0.669% 39.901% -12.012% 

0.5 0.031% 2.276% 35.231% -4.042% 

0.4 0.046% 0.669% 39.901% 1.827% 

0.3 0.031% 0.447% 36.371% 0.841% 

0.2 0.040% 0.091% 43.348% -11.052% 

0.1 0.036% -0.075% 45.368% -8.437%  
 

TABLE 3 – TAYLOR APPROXIMATION FOR A MOMENT 
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Fifth Order Polynomial Approximation
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FIGURE 13A – TAYLOR APPROXIMATION FOR A MOMENT c/L = 0.5 
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Eighth Order Polynomial Approximation
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FIGURE 13B – TAYLOR APPROXIMATION FOR A MOMENT c/L = 0.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 46 

From this exercise and examples we know what to expect from our plate 

solution. By using Timoshenko pp 111 Eq. 133 the point load on a plate 

can be introduced using the following pressure: 
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Where 
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Base on the analysis in one dimension we conclude that the shear at the 

point under the load can be taken as 
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                                                    ………………………………….. (132) 

 

for an appropriate increments ),( 21 δδ  where ),( 21 δδ can be found by testing 

for ultimate values around the point ),( ηξ . If we have a load that has been 

approximated with many point loads then it is best to determine what 

shear value to use under the load based on design and represent Taylor 

polynomial approximation as a discontinuous function with point values 

under the load. If we differentiate the shear to obtain the pressure then the 

pressure under the load can not be determined using Taylor polynomial 

as a continuous function and should be taken 
),(),(or            ),(),( 21212121 δηδξδηδξδηδξδηδξ ++−−−=++−−−= yyxx QQPQQP

                                                    …………………………………. (133) 

 

For the moment pressure equation in the x direction use Eq. 130 and Eq. 

131 and let there be two point load in opposite direction at the coordinate 

),( and ),( ηεξηεξ +−  then Eq. 131 becomes 
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Now let the moment due to the point load be applied at the point ),( ηξ as 

PM x ε20 = . By substituting M0x in Eq. 134 we have: 
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Let ε got to zero then we the pressure for a moment in the x direction 

using Eq. 130 with the following: 
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Repeating the above analysis for the pressure for a moment in the y 

direction using Eq. 130 with the following: 
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And the four moments surrounding the point under the point of 

application can be taken as 
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                                                    ………………………………….. (138) 

 

for an appropriate increments ),( 21 δδ  where ),( 21 δδ can be found by testing 

for ultimate values around the point ),( ηξ . Thus, it is best to determine the 

moment values to under the point of application based on design practice 

and represent Taylor polynomial approximation as a discontinuous 
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function with point values under the load. If we differentiate the moment 

to obtain the shear then the shear under the load can not be determined 

using Taylor polynomial as a continuous function and should be taken  
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Comment on selecting 21  and , δδδ  : 

 

A practical selection of 21  and , δδδ  are recommended by Professor John 

Stanton saying the point load in a concrete slab can be seen as a cone 

propagating in the thickness of the slab. Thus an absolute smallest 

increment of 21  and , δδδ  is the thickness of the plate t shaped in a circle. 

 

This also becomes a restriction when subdividing a pressure function into 

point loads for large deflection analysis and it becomes a condition of 

using the solution in realm of elasticity. Loads that need finer increments 

then twice the thickness of the slab cannot be approximated into point 

loads and should be addressed differently when large deflection is the 

issue. If large deflection is not of concern then Eq. 59 is the best 

alternative and has been the methods used in standard practice for ages. 

 

Final analysis: 

As we can see any load can approximated by point loads for a more 

conservative solution. However, the increment of divisions has a limiting 

value as discussed above. The interesting part is the Cartesian solution is 

it is sufficient solution and other coordinates transformations are not 

necessary provided the load is contained in the boundary condition. For 

example for a simply supported circular plate the boundary condition can 

be satisfied as long as the load is contained in the circle.  
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Finally for large deflection with a point load Pi , a moment in the x 

direction Mix and a moment in the y direction Miy  at the point of 

application ),( ii ηξ makes the coordinate ),( ii ηξ  becomes another 

coordinate (xi, yi) in the final large deflection of the plate. Thus, a new set 

of equations is requires so there is no change in length to the original 

point ),( ii ηξ  thus for a rectangular plate we have: 
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      ……………………………………… (140) 

 

With these additional equations the solution can be found exactly for 

point loads moments. The solution is similar to finding the coefficients  

for large deflection of a beams. Thus we start with an initial value for the 

Taylor polynomial coefficients plus the coefficients (xi, yi) and the free 

boundaries and update numerically, and the solution becomes exact. 

 

 

 

 

 

  


