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General Solution for symmetry Case I:
Staring with Eq. 37 and 38 pp 39 and Eq 102 pp 81 from “Theory of Plates
and Shells” by Timoshenko and Woinowsky-Krieger we have:
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Where f(x + y) is a function to be found, in here we assume symmetry and
the moments are a function on x + y only.

As a result we have
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Let m = x + y and substitute in Eq. 2 we have:
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The solution of Eq. 4 from before:
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From Timosheko Eq81 pp100 we have:
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Where M7 is the total moment on the plate segment

Substituting Eq. 7 in Eq. 8 and rearranging we have:
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And integrate Eq. 9 with respect to n yields:
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Eq. 11 is a Quartic equation in u and has four roots, two are for coordinates
(x, v) and (, x) and the others are possibly imaginary.

And the solution is found numerically by substituting back in Eq. 5, 6 and 7.
An alternative preferred solution for Eq. 11 can be found by expressing in
w=w, =w,. Rewriting Eq. 6 to
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Substitute Eq.12 in Eq. 11 yields:
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Let v =tan @, so it is defined everywhere, and substitute in Eq. 13 yeilds
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Equation 14 has two basic roots in 8 and the rest are differs by 2 multiples.
Thus wof Eq. 13 has only two real roots for coordinates (x, y) and (y, x).

General Solution for axi-symmetry Case II:
Changing Eq. 2 to a function on x — y , thus
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Where g(x - y) is a function to be found, in here we assume axi-symmetry
and the moments are a function on x - y only.

As a result we have
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Let n = x - y and substitute in Eq. 15 we have:
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The solution of Eq. 17 from before:

0.5g(n)dn +C,
= Jo3g(dn+ F Gy e (18)
\/I—QOSf(n)dn+C)z
And
0.5g(n)dn + C,
I (19)
\/1—(.[0 Sg(n)dnJrC)Z
And
o
M. =D|—+v— |=0.5D(+v)g(n)
I’X l’y_
M,=D Loyt cospasvemy (20)
I”y Vx_
Mxy:D(l—v)aaaw:—D(l—v)gv;: 0.5D(1 = v)g(n) .
X n -
g [1 ~([o.5g(mdn + cﬂz

From Timosheko Eq81 pp100 we have:
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Where M. is the total moment on the plate segment

Substituting Eq. 19 in Eq. 21 and rearranging we have:
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Eq. 24 is a Quartic equation in v and has four roots, two are for coordinates

(x, -y) and (y, -x) and the others are possibly imaginary.

And the solution is found numerically by substituting back in Eq. 18, 19 and

20.

An alternative preferred solution for Eq. 24 can be found by expressing in

w=w, =-w,. Rewriting Eq. 19 to



Substitute Eq.25 in Eq. 24 yields:
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Let w=tan@, so it is defined everywhere, and substitute in Eq. 13 yeilds
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Equation 27 has two basic roots in 6 and the rest are differs by 2w multiples.
Thus wof Eq. 26 has only two real roots for coordinates (x,- y) and (y,- x).

General Solution for Case III:
Changing Eq. 2 to a function on ax + by , thus
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Where /(ax + by) is a function to be found, in here we assume the moments
are a function on ax + by only.

As a result we have
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Let ¢t = ax + by and substitute in Eq. 2 we have:
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From Timosheko Eq81 pp100 we have:
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Equation 37 has two basic roots in 6 and the rest are differs by 2w multiples.
Thus wof Eq. 35 has only two real roots for coordinates (x/a, y/b) and
(v/a, x/b).

General Solution Case IV:

The following is the general solution for vertical loads on the plate without
buckling in the Cartesian coordinates using Taylor’s and Fourier’s
representation.

We start by rewriting the partial differential (Eq. 100 pp81 Timoshenko and
Woinowsky-Krieger book using Eq. 37, 35 and Eq. 102 pp81) as follows:
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Let us express w with an accurate approximation using Taylor expansion
polynomial over the intervals 0<x<a and 0<y<bfor arectangular portion
of the plate (this representation has to exist since we are not assuming plates
deflecting to infinity and from physics for every load there is a unique
deflection to be guaranteed in the elastic realm giving a certain bounded
function over that portion of the plate. Thus, the function can be represented
by a Taylor expansion polynomial using Taylor theorem with unique
coefficients for every load) so:
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Now express wy, Wy, g(x,»), h(x,y), q(x,y) and in Fourier’s representation over
the interval 0<x<a and 0<y <bfor arectangular portion of the plate in
Cartesian coordinates as follows:
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Even though these are not a full representation of a Fourier series these
functions will give exact values in the intervals0<x<a and 0<y<b.

By substituting Eq. 47 through 51 in Eq. 39 and differentiating when it is
required yields:
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Equating terms result in the following equation to be satisfied:
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Equation 58 is to be equated term by term for everym =1, 2, 3, 4,.... and n
=1, 2, 3,4,..... Thus the solution can be achieved by selecting a set of
coefficients p; forj=1,2,3,....,rand k=1,2,3, ...., t and for an
acceptable set of n and m then integrate Eq. 52 through 56 numerically with
an acceptable accuracy and see if Eq. 58 is satisfied for every n and m. If it is
not satisfied then updated p;; with an acceptable conversion algorithm such
as Newton Raphson Method with the Jacobian matrix. As we said before
there is one deflection per load thus the coefficient p; must be unique, thus
there is one root for the solution of Eq. 58. The initial vector pj, can be taken
by letting g(x,y) = w, and A(x,y) = w), so that the result gives the solution for
small deflections as a start (see Timoshenko Eq 101, 102 pp81) this makes
Eq. 58:

[[%j . (%”K%jw + (%jw} Lo (59)

It 1s seen that this becomes a matrix inversion for pj if jk = mn and the
matrix to be inverted is an (mn) x (mn) inverted matrix. All of the
coefficients of the left of Eq. 52 to 55 can be evaluated exactly without
numerical integrations. The proposed general solution promises to be exact
for an acceptable accuracy for the deflection. In the real world depending on
the application there always a defined acceptable tolerance set by the
engineer.

To control this tolerance it is best to represent Eq. 40 as follows:

Do e (x)(2)
b4W—Zijk(aj (bj ....................................................... (60)

=0 k=0
When b > a, this is done 1n order to have a more conversion series with a

good representation of the deflection for 0<> <1 and 0< % <1.
a
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Boundary Condition:

The boundary condition of the plate at the edges or internally can be
achieved by selecting a conversion series for Eq. 60 that satisfies the
boundary conditions for any set of j and k. This will become evident the
following application examples.

Section 1:
A. Clamped Rectangular Plate at the boundary edge:
By inspection at x = 0 and x = a Eq. 60 must have aroot at x =0 and x =
a to have zero deflections. Also for a clamped plate w, =0 at x =0 and x
= a so Eq. 60 must have another root at x = 0 and x = a to have zero
slopes. This can also be said for the boundaries at y and Eq. 60 can be
written as:

2l )
s8R

....................... (61)
Thus w,, and w,, can be written as:
=2 p,»{(j A + 3)@ ~2(j+3)( + 2)@ F+2 1)@ }
. |:(Xjk+4 - 2(ljk+3 N (ljk+2:|
b b b
............................... (62)
b22 w, = ,- Z p j{(k + 4)(k + 3)[%} —2(k +3)(k + 2)[%} +(k+2)(k + 1)[%} }
3 {(Ejjw ) 2(£jj+3 N (zjﬁz}
a a a
............................ (63)

Using Eq. 62 and 63 we can find the moments at boundary knowing the
slopes are zero at the boundary such that 1/r, = -w,at x = 0 etc. and the
moments becomes:
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We can see from Eq. 64 and 65 that the moments on the boundaries are
different functions with different coefficients p; and Eq. 61 is a
representation of a clamped plate.

B. Clamped Rectangular Plate at the boundary edge and symmetric
load:

For a symmetric load we first translate the deflection to the center of the
plate and look at the deflection we have:

> iop,{( j ﬂm{gjlﬂm ................................ (66)

Where Taylor expansion is done on x* and y” to obtain symmetry and the

~

D _
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roots at x = J_r% and y = J_rg satisfied the boundary conditions. When

translating back to a corner of the plate Eq. 66 becomes:
D root 2 2 2 k2
== d Y| |2
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And the moments becomes:
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And we show symmetry in the moments.

Now we seek the moments at x = a/2 and y = b/2. First we find w,, and w,

from Eq. 67 as follows:
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Substitute x = a/2 and y = /2 in Eq. 70 yields:
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Since w, = w), = 0 at x = a/2 and y = b/2 the moments at the center becomes:
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2 35 a 4
b2 r ot bz . 1 J+k+1
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For a square plate @ = b then w is the same for the coordinate (x,)) and (,x)
then j=k and we can write p; = py; = p; = p; and substitute in Eq. 67 yields:

S o [ ) 31 ) Im—— 75)

C. Clamped Rectangular Plate with a Clamped ellipse Built in the center
See Fig. 1

S

[}
[}

y (ab)

2 2
©4____ (x—a/2} +(y—b/2j _1=0
c d

v

Fig. 1- Clamped Rectangular Plate with a Clamped ellipse Built in the center
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By inspection at x =0 and x = a Eq. 60 must have a root atx =0 and x =
a and at the contour of the ellipse to have zero deflections. Also for a
clamped plate w, = 0 at x = 0 and x = @ and at the contour of the ellipse so
Eq. 60 must have another root at x = 0 and x = a and at the contour of the
ellipse to have zero slopes. This can also be said for the boundaries at y
and Eq. 60 can be written as Eq. 61 with the ellipse contour:

2 H] e[RRI BB F RIp-RE

~

S 0 R O (R O O

One can see Eq. 76 can be expanded to give another expression on Taylor
polynomial and the solution can be obtained.

D. Clamped Triangular Plate:

Similar to what we have done before by inspection at x =0 and y = 0 and
at the edge of triangle Eq. 60 must have a root at x =0 and y = 0 and at
the edge of triangle (see Fig 2) to have zero deflections. Also for a
clamped plate w, = 0 at x = 0 and at the edge of triangle w,=0aty =0
and at the edge of triangle then Eq. 60 must have another root at x = 0

and y = 0 and at the edge of triangle to have zero slopes and Eq. 60 can
be written as:

Do (V= sy, (2)[2)
b4W (aj (bj |:a+b 1} j=0k=0pjk(aj (bj .................................. (77)
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(0.0)

(a,0) X

Fig. 2- Clamped Triangular Plate all sides

One can see Eq. 77 can be expanded to give another expression on Taylor
polynomial and the solution can be obtained.

E. Two Side Clamped Rectangular Plate with a Clamped ellipse Built at
the edge

Similar to what we have done before by inspection at x =0 and y = 0 and
at the edge of the ellipse Eq. 60 must have a root at x =0 and y = 0 and at
the edge of the ellipse (see Fig 3) to have zero deflections. Also for a
clamped plate w, = 0 at x = 0 and at the edge of the ellipse w,=0 aty =0
and at the edge of the ellipse then Eq. 60 must have another root at x =0
and y = 0 and at the edge of the ellipse to have zero slopes and Eq. 60 can
be written as:

D, (_j@m_j ; (gj . 1}2 >3 1 (—j@j ......................... 78)
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(0,0)

(a,0) X

Fig. 3- Clamped Plate all sides

One can see Eq. 78 can be expanded to give another expression on Taylor
polynomial and the solution can be obtained.

F. Two Side Clamped Rectangular Plate with a Clamped Polynomial
Curve Built at the edge

Similar to what we have done before by inspection at x =0 and y = 0 and
at the edge of the curve Eq. 60 must have a root at x = 0 and y = 0 and at
the edge of the curve (see Fig 4) to have zero deflections. Also for a
clamped plate w, = 0 at x = 0 and at the edge of the curve w, =0 aty =0
and at the edge of the curve then Eq. 60 must have another root at x = 0
and y = 0 and at the edge of the curve to have zero slopes and Eq. 60 can
be written as:

l?w (zﬂﬁ R(x, y)]zlr Zop]k( Mbjk ..................................... (79)

Where the curve is represented as polynomial:

RO =D D DX ¥Y (80)

=0 k'=0
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(0,0)

R(x,y)=0

o

»

(,0) X

Fig. 4- Clamped Plate all sides

One can see Eq. 79 and Eq. 80 can be expanded to give another
expression on Taylor polynomial and the solution can be obtained.

G. Discussion on Simple span and Clamped Plates with Large

Deflection:

Clamped plates are basically simple supported plate with a specific
moment at the edge that make the slopes at the edge flat or zero. If there
is large deflection on such a plate where the plate is unattached to its
support, and the plate a little oversized over the support, then large
deflection will cause the plate to deflect enough at the edges of the plate
to loose its support at the edge, where the friction at the support due to
the vertical load is ignored, (assumed smooth). This can happen when the
bending stresses in the plate did not reach failure, which is the case in
most thin plates, see Fig. 5 for a rectangular plate. Because the plate is
clamped this problem of loosing support at the edge is not likely to
happen in reality but it is more likely for an unattached simple supported
plates where the friction at support due to the vertical load is ignored,
assumed smooth. (This can happen in addition to reverse deflection
vertically in section of the support, see Section 3 for dealing with this
problem) However, the above solution offers to solve various clamped
plate problems that has not been solved before and if large deflection is
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not an issue then the initial value of Eq. 59 is sufficient for solution
which requires only one matrix inversion.

We give the equations for loosing supports for a symmetric loading on a
rectangular plate with any edge condition as follows:

A

I

l_J-a dx 4
C2 0 1w (b 2)T

e dy -b
y_2_J-0\/1+[wy(a/2,y)]2 }

W @b

Fig. 5 —loss of support in a plate
Section 2:

A. Rectangular Simply Supported Plate:

By inspection at x =0 and x = a Eq. 60 must have a root atx =0 and x =
a to have zero deflections. This can also be said for the boundaries at y
and Eq. 60 can be written as:

PGB CIG)
S5-I 6) ]
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Thus w, and w, can be written as:
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Using the equation for finding the moments at the edges we write:

M|o=-D— e __yp"w __g

o 1+(w ) P 1+(w JP
[ (v,) }7 [ ( y) }7 ....................................... (87)
M|o=-D—"2 __yp—Ma __g

S he B Beeyp

When solving the two equation for 1/r,=0and 1/r,=0 atx=0and x = a,
we see the only way Eq. 87 is satisfied is when

w

XX

=0 = 0 and W L0 = O e (88)

X=a

Similarly the argument holds for y =0 and y = b, so

wy-o =0 and wyy\;zg S0 e (89)
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We can see that is true already by substitution in Eq. 85 and Eq. 86 that:

WXX

y=0=0 and w_|,.o =0
y=b 4 x=a

When using Eq. 85 we find

0=2{2p0k—2p1k{(%j+ —(%j} At X =0 oo, (90)

Thus set po; = p1x 1n the polynomial of Eq. 82 and the condition is
satisfied.

‘ . k+2 k+17]
022{2p0k+2pjk2(j+1)} [ZJ —[Zj at x=a
k=0 Jj=1 L b b ]
t , S 1 e (91)
0= Z{mk + 220 1)} (f) - (%j
k=0 j=2 L ]
Or set
1 )
Por = D = _EZ P20 1) (92)
j=2
Similarly for y = 0 and y = b we have the condition:
1 !
Pi=DPj= —;Z P20k 1) i (93)
k=2

Thus when selecting these coefficients of Eq. 92 and 93 and substituting
in Eq. 82 the boundary condition are satisfied.

B. Simple Suported Rectancular Plate at the boundary edge and
symmetric load:

For a symmetric load we first translate the deflection to the center of the
plate and look at the deflection we have:

D~ kz p{@ - ﬂ{@ - ﬂk ................................ (94)
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Where Taylor expansion is done on x” and y* to obtain symmetry and the
roots at x = i% and y = i% satisfied the boundary conditions. When

translating back to a corner of the plate Eq. 94 becomes:

S I ][4 4 m——— 05)

And w, and w, becomes:

And w,, and w,, becomes:

Pl A [ Lo [ C] |

b22 W, = ,,:o {2 Pi+2p, H%jz - 6(%}1 + 1} + g(k +Dkp,, H%j - IM%JZ - (%ﬂ“}
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As before we require w,_

«=0=0 and w, |, =0.From Eq. 98 and Eq. 99 we
x=a y=b

must have:

Pjo = -Pj1 andek il 22 1 (100)

Thus when selecting these coefficients and substituting in Eq. 94 the
boundary condition are satisfied.

Now we seek the moments at x = a/2 and y = b/2. First we find w,, and w,
from Eq. 98 and Eq. 99 and using Eq. 100 yields:

6b* & 1
W o=— | ==
or azD;pOA[ 4}
6b° [ 1]'“
woo=— I
»y D j=0p10 4

Since w, = w), = 0 atx = a/2 and y = b/2 the moments at the center becomes:

6b* < LT . L
M, :_?Zp0k|:_z:l —6Vbzzp,,-o{—ﬂ
k=0 PR (102)

r 17" 6wt 17
M}y=—6bZZP.f{—ﬂ - Zp()k "
=0 k=0

2
a

For a square plate a = b then w is the same for the coordinate (x,y) and (y,x)
then j=k and we can write p;, = py; = p;; = p; and substituting in Eq. 95 yields:

S o [ ) 31 ) —— (103

Many other boundary conditions can be satisfied with finding the proper
Taylor series expansion. One more conditions will be addressed for the case
of a rectangular plate with one free edge and the others are clamped edge.

S

[}
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Section 3:

A. Three Sided fixed rectangular Plate and one free edge:

Consider Fig 6.

y (ab)

x=2z()

»
»

X
Fig. 6 Three sides clamped one side free

The function x = z(y) 1s the final deflection of the free edge and can be
expressed with an accurate approximation by Taylor polynomial as follows:

And as before the deflection can be written as

D= @qu@zz pjk@j(%jk ................................... (105)

We enforce the boundary condition of the moments:
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w w
== —vD

ey = 7D 3
[1+(wx)2F [1+(

X

»y :0
O

L (106)
oy =D »___yp— =
(R 3 S R
And the length of the plate at any y as:
e, (107)

2(y) d B
l V1+(w, (x, ) -

Which makes the solution complicated, but the solution can be enforced a
certain coordinates by taking a set of known y; say (for example dividing b
to increments b/T and y; = ib/T ,i =0, 1,2, ..) then each Eq 106 and 107 is a
set of i equations to add more equations to Eq. 58 and the algorithm of
finding pj also finds 4; Once 4; is found Eq. 106 and 107 can be used to
verify the accuracy of other points beside ;.

Non-Prismatic Plates

If we have a set of square plates with different thickness welded or attached
together to make one big plate (where the perimeter can have triangular
plates if needed) then we need to match the slope and deflection around each
plate. This can be done by matching a set of points x; and y; for the function
x =z1(y), ¥ = z»(x) at the perimeter similar to the last example. Even though
this starts to look like finite element it is a much better representation to
include large deflection and more accurate.

General Solution using Point Loads and Moments:
Before giving the general solution with point loads and a moment at the
point of application we will review the above solution using a one

dimensional beam simply supported with no large deflection.

Let us use a set of Taylor polynomial to approximate the analysis for a
simply supported beam with any loading see Fig. 7
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/ g(x)

X
E—
L |
|
FIG 7. Simple Span Beam
Expressing the load g(x) in Fourier Series yields,
q(x) = i a, sin nzx ....................................................... (108)
n=1

Now we pick Taylor series y(x) that satisfies the boundary condition. Thus
the series must have a root at x = 0 and x = L and
M(x)|x:0 = j}|x:0 = 0 and M(x)|x:L = j}|x:L = 0

We will show the behavior of the solution for a 5™, 6™, 7", 8" and 9™ order
polynomial and compare the results. We find the following equation satisfies
the boundary condition:

5% order:

r ) (5 ky \( x ! ' (2 ky \ x
=2 (32 b (2] o2 2] 09
6™ order:

r x)’ xY (5 5 k, \ x ! xY (3 2 ky \ x
”’”‘E{"l(z) R S H R R EE S
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9™ order:

L xY x ) xY x Y x) 14 7 5 5
=—I|k|—| +k|=| +k|—=]| +k,| = | +k|—=| —| 6k +—k, +—k, +—k, +—k. +
y(x) Ell: I[Lj Z(Lj S[Lj 4(Lj S(Lj ( 1T R S T R TS

3
+k; 2+ 5k1+£k2+§k3+ik4+gk5—ﬁ X
L 3 2 2 3 2 \L

Where k., k,,k,,k,, ks, k, and k, are constants to be found. Now following the
proposed solution we express the equation for the slope in Fourier series as:

y= an cos X
n=0 L
where (114)

n

2L T X !
bnzzjo y(x)cos i dszjOy(Lu)cosnﬂudu

When integrating Eq. 109, 110, 111, 112 and 113 using Eq. 114 then
differentiating three time to get the pressure and equating to Eq. 108 we
obtain a set linear system of equations in k;. When inverting the matrix for
each polynomial equation we obtain the following solutions:
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7™ order

ki

k2 =

0 -0.052359878 a,/2
-0.130899694 -0.087266463 a2
................................ (115)
-0.024223654 0 0.072670961 a,/2
0.072670961 -0.052359878 -0.218012883 a2
-0.104755807 -0.087266463 -0.078431662 as/2
................................. (116)
-5.0307E-17  0.06562175 -5.55112E-17 -0.131243499 a2
-0.024223654 -0.229676124 0.072670961  0.459352247 a2
0.072670961 0.247129416 -0.218012883 -0.598978587 a2
-0.104755807 -0.047469887 -0.078431662 -0.079593151 a2
................................. (117)
0.004447133 0 -0.180108893  1.249E-16  0.277945823 | [ a1/2_
-0.017788533  0.06562175  0.720435572 -0.131243499 -1.11178329 a2
0.003812983 -0.229676124 -1.062812804 0.459352247 1.752289761 as/2
0.050820917 0.247129416  0.66691391  -0.598978587 -1.365627767 a2
-0.106136585 -0.047469887 -0.022510129 -0.079593151 -0.086298663 as/2
.................................. (118)

2.7452E-16 -0.040478794 -5.35683E-15 0.518128567 9.13158E-15 -0.655756467
0.004447133 0.182154574 -0.180108893 -2.331578551 0.277945823 2.950904103
-0.017788533 -0.269531601 0.720435572 4.158719394 -1.11178329 -5.429484287
0.003812983 0.093305925 -1.062812804 -3.674817977 1.752289761 5.23230919
0.050820917 0.074523349 0.66691391 1.610379068 -1.365627767 -2.796218283
-0.106136585 -0.053491716 -0.022510129 -0.002513738 -0.086298663 -0.097553632
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Now we investigate several loading condition:

1- Expressing the loading of Fig. 8 in Fourier Series yields,

cL

A
\ 4

FIG 8. Partial Load on a Simple Span Beam

nrwc
» 1—cCOS I X
x)=2 1 1 RPN 120
q(x) q; — ; (120)
Thus:
nrce
u 1-cos I
ZHZT ....................................................................... (121)

Substituting in Eq. 115,116 117, 118 and Eq. 119, and graphing the results
for ¢ =.7 yields Fig 11A and Fig 11B; Table 1 shows the results in
comparing with the exact solution.

2- Expressing the loading of Fig. 9 in Fourier Series to obtain the pressure
for a point load yields,

.. hmwe . nwé
w SN Sin

g(x)=—4¢> —L L in (122)

nr L
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y (c—¢&/L |
; (c + 8)71
cL ‘|
i
L

FIG 9. Load on Simple Span Beam to be converted to Point Load

Let the point load P = 2€ g which is the load under ¢ and substitute for g in

Eq. 122
Thus
. hre
g0 =223 sin nwe ™ L nex (123)
L P L N e [ e
L

g() =23 sin T S sin TET (124)
Thus

O (125)
2 L L

Substituting in Eq. 115,116 117, 118 and Eq. 119, and graphing the results
for ¢ = .3 yields Fig 12A and Fig 12B; Table 2 shows the results in
comparing with the exact solution.
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3- Expressing the loading of Fig. 10 in Fourier Series to obtain the pressure
for a moment yields,

nwe
1-cos
7ZC|: L } nwXx

q(x)= 4qi cos nL ST (126)

nr L

FIG 10. Load on Simple Span Beam to be converted to a Moment

Let the moment M = 0.5¢ (€ ¢) + 0.5¢ (€ ¢) = g€ which is the moment for
loading in Fig. 10, and substitute for ¢ in Eq. 126

Thus

nrwe
1 —cos
7[6’[ L } nwx

q(x):4%§n7rcosnL (nﬂgjz sin s (127)
L

Let € go to zero and we get the pressure representing a Moment as follows:
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Substituting in Eq. 115,116 117, 118 and Eq. 119, and graphing the results
for ¢ = .5 yields Fig 13A and Fig 13B; Table 3 shows the results in
comparing with the exact solution.

All of the results shows Taylor approximation follows Fourier
approximation and the error improves with adding higher term to Taylor
polynomial.

For the point load we can see that under the pressure ci—V = 50 the
X

x=cL

pressure approaches infinity under the load. This has happen because we
approximated the actual shear, which is a discontinuous function, by a
continuous function. As in the actual shear curve at that point the shear is
never defined under the load” since it has two values and the question
becomes which value can we use. In practice the shear is always taken as

maxQV(cL -,V (cL+6 )|) for an appropriate increments where s can be found

by testing for ultimate values around cL. Thus the solution for the shear is
correct for all values except under the load and can be taken as
maxQV(cL =),V (cL + 5)|) of the approximate Taylor polynomial. If we have a

load that has been approximated with many point loads then it is best to
determine what shear value to use under the load based on design practice
and represent Taylor polynomial approximation as a discontinuous function
with point values under the load. If we differentiate the shear to obtain the
pressure then the pressure under the load can not be determined using Taylor
polynomial as a continuous function and should be taken
P=V(cL-06)-V(cL+9).

2

3

? The reason the actual shear diagram has discontinuity because it is telling us in real life there no such
thing as a point load and in reality it is some kind of a pressure with some small € around the load as
in Fig 9.
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Similarly from the moment diagram we can see that under the shear
am

dx |,
because we approximated the actual moment function, which is a
discontinuous function, by a continuous function. As in the actual moment
diagram at the point of application the moment is never defined under the
moment’ since it has two values and the question becomes which value can
we use. In design practice the two moment is always taken as M and M " or
M(cL - &) and M (cL + &) with their corresponding sign for an appropriate
increments where s can be found by testing for ultimate values around cL.
Thus the solution for the moment is correct for all values except under the
point of application and can be taken as M (cL — &) and M(cL + &) of the
approximate Taylor polynomial. Thus it is best to represent Taylor
polynomial approximation as a discontinuous function with point values
under the moment. If we differentiate the moment to obtain the shear then
the shear under the load can not be determined using Taylor polynomial as a

continuous function and should be taken ¥ = %[M (cL — &)= M(cL + 5)].

= o 50 the shear approaches infinity under the load. This has happen

Finally if we differentiate the shear to obtain the pressure then the pressure
under the load can not be determined using Taylor polynomial as a
continuous function and should be taken zero. This can also be seen when
using a slighted slanted line instead of a vertical line at the point of
application, cL, in the moment diagram then differentiating twice to get the
pressure resulting in a zero pressure.

* The reason the actual moment diagram has discontinuity because it is saying in real life there no such
thing as a moment at a point of application and in reality it is some kind of a pressure with some small €
around the load as in Fig 10. For example if we try to put a moment using a pinion of a motor then in
reality the pinion of the motor could never have a zero radius and the radius can only be as small as € and
transferring the load can only be possible by introducing some kind of a axis-symmetric pressure at the
point of application from-€ £ x —cL < €.
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Fifth Order Polynomial Approximation

Sixth Order Polynomial Approximation

c/L A error A max M+ error M+ max c/L | Aerror A max M+ error M+ max
in graph error in graph Error in graph Error in graph error
1 0.000% 0.000% 0.000% 0.000% 1 0.000% 0.000% 0.000% 0.000%
0.9 0.460% -0.065% 13.186% -0.456% 09| 0.172% 0.007% 8.279% 0.129%
0.8 1.014% -0.226% 19.070% -1.466% 0.8 | 0.086% 0.010% 1.442% 0.411%
0.7 0.997% -0.362% 13.237% -2.413% 0.7 | -0.162% | -0.001% -8.481% 0.224%
0.6 0.908% -0.380% 8.817% -2.733% 0.6 | -0.579% | -0.063% -23.860% -1.005%
0.5 | -0.206% -0.121% | -18.672% -2.778% 0.51-0.206% | -0.121% -18.672% -2.778%
04 | -2.342% 0.546% -55.590% -3.124% 0.4 | 0.701% | -0.011% 11.164% -3.744%
0.3 | -3.906% 1.386% -86.714% -4.667% 0.3 | 0.854% 0.157% 41.860% -3.068%
0.2 ]| -6.173% 2.110% | -113.532% | -7.982% 0.2 | 0.619% 0.351% 94.853% -2.854%
0.1 -11.445% | 2.694% | -131.784% | -13.191% 0.1 | -2.664% | 0.458% 108.875% -5.160%
Seventh Order Polynomial Approximation Eighth Order Polynomial Approximation
c/L A error A max M+ error M+ max c/L A error A max M+ error M+ max
In graph error in graph error in graph error in graph error
1 0.000% 0.000% 0.000% 0.000% 1 0.000% 0.000% 0.000% 0.000%
0.9 | 0.109% 0.007% 5.682% 0.129% 0.9 ] 0.029% -0.001% 1.633% -0.032%
0.8 | 0.059% 0.010% -1.893% 0.209% 0.8 | -0.077% 0.002% -7.956% 0.035%
0.7 | -0.240% | -0.009% | -14.604% 0.030% 0.7 ] -0.017% 0.007% -1.643% 0.315%
0.6 | -0.207% | -0.042% -6.521% -0.143% 06| 0.133% -0.006% 15.180% 0.119%
0.5 ] 0.056% | -0.026% 13.036% -0.544% 0.5 0.056% -0.026% 13.036% | -0.544%
0.4 | 0.525% 0.066% 34.944% -2.048% 04 -0.189% 0.013% -16.294% | -0.840%
0.3 | 0.665% 0.076% 13.035% -3.706% 0.3 | -0.139% 0.045% -37.868% | -2.273%
0.2 | -0.733% | -0.042% | -52.946% -2.450% 0.2 0.511% -0.004% 13.571% | -3.342%
0.1 ] -2.824% | -0.228% | -132.625% -1.674% 0.1 [ -0.249% -0.089% [ 106.610% [ -0.567%
Nineth Order Polynomial Approximation
c/L | Aerror A max M+ error M+ max
in graph error in graph Error

1 0.000% 0.000% 0.000% 0.000%

0.9 | 0.013% | -0.001% 0.679% -0.032%

0.8 | -0.062% | 0.002% -6.709% 0.022%

0.7 | -0.001% | 0.003% 4.628% 0.089%

06| 0.112% | -0.006% 13.019% 0.161%

0.5 | -0.026% | -0.008% | -11.967% 0.054%

0.4 | -0.160% | 0.015% -21.158% -0.856%

0.3 | 0.090% 0.005% 24.438% -1.102%

0.2 | 0.413% | -0.014% 27.563% -2.976%

0.1 ] -0.496% | 0.014% -83.283% -0.589%

TABLE 1 - TAYLOR APPROXIMATION FOR A RECTANGULAR PRESSURE
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Fith Order Polynomial Approxim ation Fifth Order Polynomial Approximation

16 0.12

: 0.1
12
0.08

1 .
/ \ em—q (actual) 0.06 / \

0.8

— Fourier / \
06 1 0.04

m— Taylor

Moment (actual)

Moment Taylor

04
/ 0.02

0.2 NS \

0 ‘ ‘ ‘ \ 0 ; ; ; : \

0.2 0.4 0.6 0.8 1 12
02 0.2 0.4 0.6 0.8 1 12 0,02
x/L x/L
Sixth Order Polynomial Approximation Sixth Order Polynomial Approximation
15 0.12

0.1 7@%
0.08

— (actual) 0.06 / \

. : e Moment (actual)
@ Fourier
@ Moment Taylor

—Taylor 0.04 / \

' ' ' : 0.02

05 \
0 : ; ; ; )

0.2 0.4 0.6 0.8 1 12
1 -0.02
x/L x/L
Seventh Order Polynomial Approximation Seventh Order Polynomial Appproximation
15 0.12
0.1
0.08
—
a{actual) 0.08 e \oment (actual)
— Fourier
0.04 = Moment Taylor
—Taylor .
0.02
0
0.2 0.4 0.6 0.8 1 12
-15 -0.02
x/L x/L

FIGURE 11A - TAYLOR APPROXIMATION FOR A RECTANGULAR
PRESSURE c/L =.7
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Eighth Order Polynomial Approximation Eighth Order Polynomial Appproxim ation

01 Tﬁ
0.08

em— g (actual) 0.06

: e Moment (actual)
@ Fourier
0.04 @ Moment Taylor

—Taylor . / \
0.02

0.2 0.4 0.6 0.8 1 112

-0.5 -0.02
x/L x/L
Nineth Order Polynomial Approximation Nineth Order Polynomial Appproxim ation

18 0.12

16
0.1

14 / \

- 0.08 / \

em— ) (actual 0.06 —
a( ) Moment (actual)
e Fourier

0.04 @ Moment Taylor
@m— Ty |or . / \
0.02 \
0 T T T T

.-

0.2 0.4 0.6 0.8 1 112

-0.02

FIGURE 11B — TAYLOR APPROXIMATION FOR A RECTANGULAR
PRESSURE c¢/L =.7
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Fifth Order Polynomial Approximation Sixth Order Polynomial Approximation
c/L A error A max M+ error | M+ max c/lL A error A max M+ error M+ max
in graph error in graph error in graph error In graph error
~1.0 -16.04% 2.90% 39.90% | -18.51% ~1.0 -6.80% 0.52% 99.55% -9.96%
0.9 -8.34% 2.49% -125.4% | -14.59% 0.9 -0.17% 0.42% 107.2% -7.81%
0.8 -4.05% 1.43% -90.02% | -12.81% 0.8 1.45% 0.19% 37.58% -11.17%
0.7 1.04% 0.00% 7.15% -14.98% 0.7 1.47% -0.05% 14.78% -15.09%
0.6 3.82% -1.25% 49.74% | -19.15% 0.6 -1.40% -0.20% -69.30% -13.36%
0.5 2.85% -1.83% 31.69% | -21.46% 0.5 -1.06% -0.32% -47.81% -11.53%
0.4 3.82% -1.25% 49.74% | -19.15% 0.4 -1.40% -0.20% -69.30% -13.36%
0.3 1.04% 0.00% 7.15% -14.98% 0.3 1.47% -0.05% 14.78% -15.09%
0.2 -4.05% 1.43% -90.02% | -12.81% 0.2 1.45% 0.19% 37.58% -11.17%
0.1 -8.34% 2.49% -125.4% | -14.59% 0.1 -0.17% 0.42% 107.2% -7.81%
Seventh Order Polynomial Approximation Eighth Order Polynomial Approximation
c/L A error A max M+ error | M+ max c/L A error A max M+ error M+ max
in graph error in graph error in graph error In graph error
~1.0 -6.95% -0.32% -165.9% | -5.24% ~1.0 -3.48% -0.13% 120.96% -2.20%
0.9 -1.34% -0.15% -93.22% | -5.87% 0.9 0.38% -0.05% 54.91% -6.12%
0.8 1.78% 0.14% 43.16% | -11.51% 0.8 0.24% 0.08% -57.52% -8.93%
0.7 1.22% 0.20% 80.64% -9.92% 0.7 -0.77% 0.06% -56.46% -7.82%
0.6 -1.02% -0.07% -34.31% | -9.79% 0.6 0.03% -0.02% 27.46% -9.31%
0.5 -1.06% -0.32% -47.81% | -11.53% 0.5 0.62% -0.11% 61.32% -7.85%
04 -1.02% -0.07% -34.31% | -9.79% 04 0.03% -0.02% 27.46% -9.31%
0.3 1.22% 0.20% 80.64% -9.92% 0.3 -0.77% 0.06% -56.46% -7.82%
0.2 1.78% 0.14% 43.16% | -11.51% 0.2 0.24% 0.08% -57.52% -8.93%
0.1 -1.34% -0.15% -93.22% | -5.87% 0.1 0.38% -0.05% 54.91% -6.12%
Nineth Order Polynomial Approximation
c/lL A error A max M+ error | M+ max
in graph error in graph error
~1.0 -3.39% 0.04% -159.99% | -0.27%
0.9 0.88% -0.01% 27.14% -6.67%
0.8 0.57% -0.02% 83.81% -6.32%
0.7 -0.82% 0.06% -59.73% | -7.85%
0.6 -0.17% 0.02% -27.51% | -6.86%
0.5 0.62% -0.11% 61.32% -7.85%
0.4 -0.17% 0.02% -27.51% | -6.86%
0.3 -0.82% 0.06% -59.73% | -7.85%
0.2 0.57% -0.02% 83.81% -6.32%
0.1 0.88% -0.01% 27.14% -6.67%

TABLE 2 - TAYLOR APPROXIMATION FOR POINT LOAD
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Fifth Order Polynomial Approximation

Fifth Order Polynomial Approximation
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FIGURE 12A — TAYLOR APPROXIMATION FOR A POINT LOAD ¢/L=0.3
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FIGURE 12B — TAYLOR APPROXIMATION FOR A POINT LOAD ¢/L =0.3
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Fifth Order Polynomial Approximation

Sixth Order Polynomial Approximation

c/lL A error A max M+ error M+ max c/lL | Aerror A max M+ error M+ max
In graph error in graph Error in graph error in graph Error
1 0.332% | 2.902% 83.868% -18.512% 1 0.151% 0.522% 75.343% -9.961%
0.9 | 0.151% 1.661% 40.283% -17.811% 0.9 | 0.058% 0.281% 51.503% | -15.179%
0.8 | 0.254% | -1.399% 55.860% -31.887% 0.8 | 0.158% 0.232% 47.402% | -24.721%
0.7 | 0.309% | -4.884% 47.294% -40.817% 0.7 | 0.110% 0.559% 41.877% | -18.679%
0.6 | 0.264% | -4.998% 48.623% -31.742% 06 | 0.127% -1.231% | 47.297% | -28.493%
0.5 | 0.147% | 0.399% 43.398% -33.510% 0.5 | 0.147% 0.399% 43.398% | -33.510%
0.4 | 0.264% | -4.998% 48.623% -62.579% 0.4 | 0.127% -1.231% | 47.297% | -10.201%
0.3 | 0.309% | -4.884% 47.294% -40.817% 0.3 | 0.110% 0.559% 41.877% | -34.831%
0.2 | 0.254% | -1.399% 55.860% -31.887% 0.2 | 0.158% 0.232% 47.402% | -24.721%
0.1 [ 0.151% 1.661% 40.283% -94.090% 0.1 | 0.058% 0.281% 51.503% | -15.179%
Seventh Order Polynomial Approximation Eighth Order Polynomial Approximation
c/L A error A max M+ error M+ max c/lL | Aerror A max M+ error M+ max
in graph Error in graph Error in graph error in graph Error
1 0.081% | -0.316% 66.387% -5.242% 1 0.048% -0.129% 57.357% | -2.197%
0.9 | 0.069% | 0.161% 53.720% -15.743% 0.9 | 0.055% 0.089% 50.047% | -12.985%
0.8 | 0.066% | 0.736% 39.077% -13.072% 0.8 | 0.033% 0.214% 40.231% | -9.766%
0.7 | 0.079% | 0.089% 46.368% -18.872% 0.7 | 0.064% 0.454% 42.343% | -14.350%
0.6 | 0.086% | 0.535% 41.161% -17.692% 0.6 | 0.044% 0.793% 39.084% | -10.916%
0.5 | 0.058% | 4.890% 39.290% -13.703% 0.5 | 0.058% 4.890% 39.290% | -13.703%
0.4 | 0.086% | 0.535% 41.161% -27.868% 0.4 | 0.044% 0.793% 39.084% | -1.588%
0.3 | 0.079% | 0.089% 46.368% 20.425% 0.3 | 0.064% 0.454% 42.343% | -1.590%
0.2 | 0.066% | 0.736% 39.077% -13.072% 0.2 | 0.033% 0.214% 40.231% | -9.766%
0.1 | 0.069% | 0.161% 53.720% -15.743% 0.1 | 0.055% 0.089% 50.047% | -12.985%
Nineth Order Polynomial Approximation
c/lL A error A max M+ error M+ max
in graph error in graph error
1 0.030% 0.041% 48.529% -0.266%

0.9 | 0.036% | -0.075% 45.368% -8.437%

0.8 | 0.040% 0.091% 43.348% -11.052%

0.7 | 0.031% 0.447% 36.371% -6.827%

0.6 | 0.046% 0.669% 39.901% -12.012%

0.5 | 0.031% 2.276% 35.231% -4.042%

0.4 | 0.046% 0.669% 39.901% 1.827%

0.3 | 0.031% 0.447% 36.371% 0.841%

0.2 | 0.040% 0.091% 43.348% -11.052%

0.1 | 0.036% [ -0.075% 45.368% -8.437%

TABLE 3 — TAYLOR APPROXIMATION FOR A MOMENT
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FIGURE 13A — TAYLOR APPROXIMATION FOR A MOMENT ¢/L =0.5
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From this exercise and examples we know what to expect from our plate
solution. By using Timoshenko pp 111 Eq. 133 the point load on a plate
can be introduced using the following pressure:

N . MmMTX . NT
g, ) =>Ya, sin " sin 22X (130)
m=1 n=1 a b
Where
- A G S Gn T e (131)
ab a

Base on the analysis in one dimension we conclude that the shear at the
point under the load can be taken as

2 3

0.(&+5,1-5,))

+ [max(0, (£ - 6,7+ 8, |0.(E + 8.0+ 5[0, (£ - 5,1 - 6,)

3

and

Qy(§_51’n+52)‘)

+max(0, (£+ 5,7~ 8)[0, (€ +5.n+ 5,0, - 8.7~ 5,)

2 b b

for an appropriate increments(d,,5,) where(d,,5,) can be found by testing

for ultimate values around the point(&,7). If we have a load that has been
approximated with many point loads then it is best to determine what

shear value to use under the load based on design and represent Taylor
polynomial approximation as a discontinuous function with point values

under the load. If we differentiate the shear to obtain the pressure then the
pressure under the load can not be determined using Taylor polynomial

as a continuous function and should be taken
P=0.(5-6,n-06,)-0.(5+6,,n+0,) or P:Qy(éj_é‘lan_52)_Qy(é:+51’77+52)

For the moment pressure equation in the x direction use Eq. 130 and Eq.
131 and let there be two point load in opposite direction at the coordinate
(& —¢,m)and (£ +&,17) then Eq. 131 becomes
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a« =4—Psin nﬂn{sin mn(f—g)_sin m7r(§+8)}:_8_Psin mre mré . nam
ab b a a

Now let the moment due to the point load be applied at the point(&,7)as
M,, =2¢&P . By substituting M, in Eq. 134 we have:

. mre
sin
aM mré& . nrx
a,, =——mrx A osMPE Gn (135)
ab mr & a b
a

Let € got to zero then we the pressure for a moment in the x direction
using Eq. 130 with the following:

4M .
a :——0"m7rcosﬂ§smm ........................................ (136)

mn 2

a a

Repeating the above analysis for the pressure for a moment in the y
direction using Eq. 130 with the following:

M, MIE s M (137)

y )
A = T S e COS ettt e e
" ab’ a b

And the four moments surrounding the point under the point of
application can be taken as

M. (E-06,,n+06,),M . (&-0,,n—0,),M (&+6,,n+6,),M.(+06,n—0,)
and

My(é:—’_51777_52)7My(§_§1577_52)>My(§+51777+52)9My(§_§1577+52)

for an appropriate increments (5,,5,) where(ds,,5,) can be found by testing
for ultimate values around the point(¢&, 7). Thus, it is best to determine the

moment values to under the point of application based on design practice
and represent Taylor polynomial approximation as a discontinuous
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function with point values under the load. If we differentiate the moment
to obtain the shear then the shear under the load can not be determined
using Taylor polynomial as a continuous function and should be taken

0, :max{—;[Mxy@—am—@)—Mxy(é—al,méz), —[1)[Mxy(éwl,n—52>—MU,(5+51,77+52)}
+ma>{1[Mx(é—61,n+52)—MX(5+51,n+52>] P ML (E=6.0-8)-M (& +6.7-6)] }
a a
and
Qy=ma>{—1[Mxy(:—él,n+52)—Mxy(§+51,n+52), —1[Mxy(é—(z,n—@)—Mxy(:ml,n—@)H
a a
+max[;[My(ff+5l,n—62>—M},(§+51,n+52) ,%[My@—61,77—52)—My<5—51,n+52> }

Comment on selecting 5,6, and 5, :

A practical selection of 5,5, and 5, are recommended by Professor John
Stanton saying the point load in a concrete slab can be seen as a cone
propagating in the thickness of the slab. Thus an absolute smallest
increment of §,d, and 5, is the thickness of the plate ¢ shaped in a circle.

This also becomes a restriction when subdividing a pressure function into
point loads for large deflection analysis and it becomes a condition of
using the solution in realm of elasticity. Loads that need finer increments
then twice the thickness of the slab cannot be approximated into point
loads and should be addressed differently when large deflection is the
issue. If large deflection is not of concern then Eq. 59 is the best
alternative and has been the methods used in standard practice for ages.

Final analysis:

As we can see any load can approximated by point loads for a more
conservative solution. However, the increment of divisions has a limiting
value as discussed above. The interesting part is the Cartesian solution is
it is sufficient solution and other coordinates transformations are not
necessary provided the load is contained in the boundary condition. For
example for a simply supported circular plate the boundary condition can
be satisfied as long as the load is contained in the circle.
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Finally for large deflection with a point load P; , a moment in the x
direction M;, and a moment in the y direction M;, at the point of
application (¢,,7,) makes the coordinate (&,,7,) becomes another

coordinate (x;, y;) in the final large deflection of the plate. Thus, a new set
of equations is requires so there is no change in length to the original
point (&,,7,) thus for a rectangular plate we have:

e dx
a-l. N (x »F

n=l,

1+ w (xl,y)]

With these additional equations the solution can be found exactly for
point loads moments. The solution is similar to finding the coefficients
for large deflection of a beams. Thus we start with an initial value for the
Taylor polynomial coefficients plus the coefficients (x;, ;) and the free
boundaries and update numerically, and the solution becomes exact.
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