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Abstract 

Based on classical methods, this paper addresses a theoretical solution to the problem of 

the static and dynamic pressures on a non-yielding slanted wall with a ramp on top, in 

sand. First, it derives K0r, the static at rest coefficient for a vertical non-yielding wall with 

a ramp on top, then for K0s for a slanted non-yielding wall. Additionally, it addresses 

overconsolidation of sand for these conditions. Second, it gives a theoretical solution for 

the dynamic at rest coefficient based on Mononobe-Okabe's method. It successfully 

compares the dynamic solution with the empirical methods and experiments including 

overconsolidation. These experiments were tested for a vertical wall with a flat surface on 

top. The results match experiments very closely but show the empirical equation that has 

been in existence is inappropriate. Finally, it addresses the design of a non-yielding 

retaining wall based on tolerable lateral displacement. The solution is consistent with the 

classical methods and offers a wide variety of application in practice.  

 

Introduction 

In practice, a non-yielding wall with a ramp on top is very common in sites where there is  
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a slope. These types of walls are usually stiff walls or basement walls. Occasionally, 

there are retaining walls that need to be restricted to yield due to adjacent buried 

structure, utilities, or footings on the slope. They all need to be designed to a non-yielding 

wall by using the at rest forces. There has been no theoretical solution given for such 

conditions. Similarly, a non-yielding slanted wall with a ramp on top has no theoretical 

solution. Solutions to these problems are important for understanding the forces induced 

by earthquake as has been demonstrated by Mononobe-Okabe (1929 & 1924)[6,7] for 

active and passive pressure on sand. Active and passive solutions for a slanted wall with 

ramp on top were essential in Mononobe-Okabe's equations. The lack of answer to these 

problems causes the engineer to take unnecessary risks in predicting the pressures on a 

non-yielding wall. K0 , the at rest coefficient, static and dynamic is desired to be derived 

for these conditions. For example: basement walls, stiff walls, abutments, caissons, rigid 

frames, permanent shoring, tunnels, buried structures etc. requires K0 static and dynamic 

with understanding beyond the empirical solutions. 

 

In static conditions, prior work has been developed by the author Chouery [2] in deriving 

K0 for a vertical wall with a flat surface on top. The work was done for sand and clay and 

over-consolidation sand and clay. For a wall slanted inward with a flat surface on top, a 

solution can be found in textbooks see ref. [12]. In dynamics, for a vertical wall with a 

flat surface on top, prior experiments in sand has been done by Ichihara, and Matsuzawa 

(1973)[4] and Sherif et al. (1982)[11]. Ichihara, and Matsuzawa gave empirical 

expressions for their findings. Sherif et al. showed that the available dynamic elastic 

solution proposed by Matsuo, and Ohara (1960)[5] and Wood (1973)[13] overestimate by 
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considerable amount the incremental dynamic stresses against non-yielding retaining 

structures. 

 

In this paper a theoretical solution is derived for K0 static based on approximation 

methods followed by an exact solution. Furthermore, the dynamic equations are 

presented including over-consolidation and compared with experiments. Finally, the 

design of a non-yielding retaining wall based on tolerable lateral displacement is 

addressed.  

 

Static K0 for a non-yielding vertical wall with a ramp on top 

Chouery [2] developed a method to obtain K0 for a non-yielding vertical wall with a flat 

surface on top. This method can be extended to derive K0 for a non-yielding vertical wall 

with a ramp on top. Starting with the wall with a ramp shown on Fig. 1, where the wall is 

shown with its mirror image wall, the at rest horizontal force E0r can be obtained by the 

use of the incipient shear T. The incipient shear was first introduced by Chouery [2] in 

deriving K0 . It is a downward shear that is introduced on the boundary and does not 

change E0r but causes an active failure surface. Consequently, if maximizing E0r with an 

unknown T through an active slip failure surface, K0 can be extracted.  
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FIG. 1 - Incipient Shear on two sliding walls 

 

 

a - Boundary Condition 

Subdividing the failure wedge of the downward incipient shear into vertical slices 

following Bishop (1955)[1], yields slices that are in equilibrium. Each slice is added 

together to make the wedge of Fig. 2(b). The resultant of the boundary forces on a slice 

can be transformed to a Coulomb (1776)[3] wedge as shown in Fig. 2(a). 

 

From the forces in Fig. 2(a) 

dE
y x dx

x 
 
 

   
  

( tan ) tan( )

tan tan( )1
  ............................................................................... (1) 

 

Where  is the angle of internal friction of soil,  is the soil unit weight, and 

tan /  dE dEy x  .  Solving for -dEy, yields 

 

     dE y x dx dEy x   ( tan ) cot( )  .................................................................. (2) 
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To find  and m at the boundary -dEy needs to be minimized at the boundary. 

Substituting  dE K ydy K y dxx r r  0 0   (tan tan )  in Eq. 2, where K0r is the at rest  

 

 

dx

dy

dQ

dW

dE

dEx

y









dy





0

y

x
x tan

        

yx

yx

x

y

0





Second Slip Surface

First Slip Surface

n
mm

nn

m


E0

0

0

,( )

)( ,

m

y(0, ) 0


Emr

mT

T

E

n

nr
T

r

 

 

     FIG. 2(a) - Coulomb Wedge in a Slice        FIG. 2(b) - Slip Surface 

 

 

coefficient for a vertical wall with a ramp, and minimizing -dEy in Eq. 2 with respect to  

, yields 

tan tan tan tan
cos

cot tan   


 0

1
1    m   ................................................ (3) 
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Thus, the boundary conditions are obtained. 

 

b - Approximate Solution using a line 

Chouery [2] showed that for a line approximation for a failure surface is adequate 

provided an appropriate safety factor is used. In the case of a wall with a ramp on top the 

variation between the exact and the approximate ranges from 0 to 10%, where the exact 

solution will be presented afterwards. For 30 <  < 45 degrees the safety factor can be 

taken as 9.3%. The need for approximation is to give a simpler equation for K0r. This will 

become evident later.  

 

Making a change of variable in Eq. 1: u y x  tan , du dy dx  tan  

( tan tan )   dx , u y u y xm m m0 0 0   , tan  , and integrating from u0 to um , yields 

 E K
y

dE
y

r r xy0 0
0

2
0

2
0

2 1 20

  


  


 
    


tan( )

(tan tan ) tan tan( )
 ............................ (4) 

 

Where  was replaces by  for maximum value of dEx in Eq. 1, and -tan is considered 

a constant since it’s the slope for the line equation. Rearranging Eq. 4 , yields 

 

K r0
2




tan tan

tan tan
cos

 
 

  ............................................................................................ (5) 

 

Substituting  from Eq. 3 into Eq. 5, yields the at rest coefficient: 
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K r0

2

1 1


 
cos

sin cot tan


  

  ..................................................................................... (6) 

 

Eq. 6 gives a simple equation. 

 

c - Exact Solution 

The exact solution can be obtained by similar methods as in deriving K0 for a wall with a 

flat surface on top see Chouery [2]. Therefore, maximizing the horizontal force in the 

slice, dEx in Eq. 1, with respect to  , after replacing dx dy  by  / (tan tan )  , yields 

 

tan
cos

cos( )

tan tan

tan( ) tan( )



 

 
   






























2

1
1

 ...................................................... (7) 

 

Substituting tan  back in Eq. 1 and replacing tan /  by    y dy dx  , yields 

 

dE y x dx
y

yx  
  

 







 

 


( tan )
sin ( cot )

tan

2 21
 ............................................................. (8) 

 

and thus 

dE dE y x dx
y y

yy x   
   

 







tan ( tan )

sin ( cot )( cot )

tan
  

  


1
12

 ......................... (9) 

 

Making a change of variable, u y x  tan  , thus,    u y tan , u y0 0  , 

u y xn n n  tan  , and u y xm m m  tan  , and substitute in Eq. 8 and 9 yields 
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dE udx
u

ux 
   











   sin ( cot cot tan )2 21
  ........................................................ (10) 

 

dE udx
u u

uy  
     











     
1

12sin ( cot cot tan )( tan cot )
 .............................. (11) 

Maximizing, using variational analysis, on E dE E T dE Tr x nr

x

n y mx

xn

n

m

0 0
      and    in 

Eq. 10 and 11, yields the two slip surface equations: 

 

1 1
1















u

u

u
n

tan tan 
  ......................................................................................... (12) 

 

and 

1 1
1















u

u

u
n

tan cot 
  ......................................................................................... (13) 

 

Imposing the boundary condition from Eq. 3 at x = 0 and at x = xm along with 

   u tan tan  , yields 

u

u
n

0

1
1

1
 



  

tan tan

tan tan
cos

cot tan

 

 


 
 .............................................................. (14) 

 

and 

u

u
n

m

 


  
1

1
1

tan cot

tan tan
cos

cot tan

 

 


 
 ............................................................. (15) 
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From Eq. 12, and 13 the first and second slip surface in terms of x and y are: 

x y x y y x
y x

yn n


   










1
0

0tan tan
tan ( tan ) ln

tan

 
 


 .............................. (16) 

 

and 

x x y x y x y x
y x

y xn n n n n
n n

 


    













1

tan cot
tan tan ( tan ) ln

tan

tan 
  




 .... (17) 

 

Eq. 16 and 17 involves x and y explicitly. However, they can be handled efficiently by 

rotating the axis by an angle - .  

 

Substituting u  from Eq. 12 in Eq. 10 and 11,  after replacing dx du u by / , and integrate 

from u un0  to  yields E Er nr0   and T Tn  . Substituting u  from Eq. 13 in Eq. 10 and 11, 

after replacing dx du u by / , and integrate u un m to  yieldsE Enr mr  and T Tn m  . Then, 

adding each of the integration to the corresponding horizontal and vertical forces yields 

E Er mr0   and T Tm  . Solving for K0r and tan, where 

E E u u Kr mr m r0 0
2 2

005  . ( )   and   T T u u Km m r  05 0
2 2

0 0. ( ) tan  , yields 

 

 K
z z

A z A z z A zr
m

m m m0

2

0
2 2 1

2
2 0 31 4 1 2 2


    

cos
( ) ( ) ln ln


 ................................. (18) 

 

where 

 A1

2
1  tan( ) tan   ,  
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 A2 1   tan tan( ) tan( ) tan       , 

A3
2 2 tan tan ( )    , 

z0 1 1  sin cot tan    , and  

 zm  sin cot tan  1 . 

 

The incipient shear angle 0can be found from the following: 

 

tan tan
( ) ( ) ln ( ) ln

( )
 0

1 0
2

1 0 2 0 3
2

4

0
2 2

0

1 4 1 2 1 2
 

      
m

m m

m r

B z B z B z B z B z

z z K
 ......... (19) 

 

where 

 B1
2  cos tan cot( )     , 

B2
2 cos cot( )   ,  

 B3
2  sin cot tan( )     , and 

B4
2 sin tan( )   . 
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           

 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 

0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

5 0.951 0.934 0.918 0.904 0.889 0.875 0.860 0.844 0.828 0.810 

10 0.874 0.851 0.831 0.811 0.792 0.774 0.755 0.736 0.715 0.693 

15 0.784 0.761 0.740 0.720 0.700 0.681 0.662 0.642 0.622 0.600 

20 0.691 0.670 0.650 0.631 0.613 0.595 0.577 0.559 0.540 0.519 

25 0.599 0.581 0.564 0.547 0.531 0.515 0.499 0.483 0.466 0.448 

30 0.512 0.496 0.482 0.468 0.454 0.441 0.427 0.413 0.399 0.383 

35 0.430 0.417 0.406 0.395 0.384 0.373 0.361 0.350 0.338 0.324 

40 0.355 0.345 0.336 0.327 0.319 0.310 0.301 0.292 0.282 0.271 

45 0.287 0.279 0.273 0.266 0.259 0.253 0.246 0.239 0.231 0.223 

50 0.226 0.221 0.216 0.211 0.206 0.201 0.196 0.191 0.185 0.179 

 

TABLE - 1  K0r values for  and negative  values. 

 The dividing line shown is to distinguish the values for     
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           

 0 5 10 15 20 25 30 35 40 45 

0 1.000          

5 0.969 0.992         

10 0.899 0.929 0.970        

15 0.810 0.840 0.878 0.933       

20 0.715 0.742 0.775 0.817 0.883      

25 0.620 0.643 0.670 0.704 0.748 0.821     

30 0.529 0.547 0.569 0.595 0.627 0.672 0.750    

35 0.443 0.458 0.474 0.494 0.518 0.548 0.591 0.671   

40 0.365 0.376 0.388 0.403 0.420 0.441 0.468 0.508 0.587  

45 0.294 0.302 0.311 0.321 0.333 0.347 0.365 0.389 0.425 0.500 

50 0.231 0.237 0.243 0.250 0.258 0.267 0.279 0.293 0.313 0.345 

 

TABLE - 2  K0r values for  and positive  values. 

 

The shear angle ncan be found from the following: 

tan
( ) ( ) ln tan

ln



n

r

r

B z B z B z K z

z K z

     

 
1 0

2
1 0 2 0 0 0

2
0

0 0 0
2

1 4 1 2

2
 .................................... (20) 

 

Table 1 and 2 gives values for K0r based on Eq. 18. When comparing with the 

approximate Eq. 6 the range of difference can be obtained. Note:  the K0r values can be 

restricted for    , since it is the angle of repose for a sliding mass on a slope. This 
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can, also , be seen in Eq. 3 ;  cannot be greater than  since it produce a negative value 

under the square root. However, for     the equations gives values for K0r as shown 

above the dividing line in Table 1, These values can be considered if assumed the soil is 

restrained against movement with a barrier on the slope. Thus, it will keep the soil from 

sloughing and the deflection at zero. One may encounter similarities in the classic 

Coulomb equation for active pressure. Also, Note: at  =   K0r = cos2 . This is the 

maximum possible value of K0r . If compare with Coulomb, Rankine, and Terzaghi's state 

active pressure, one finds that: for Coulomb at  =   the horizontal active coefficient KAh 

= cos2  regardless of the friction on the wall. The failure wedge angle with the horizontal 

is  , the angle of repose and parallel with the top surface. For Rankine and Terzaghi 

(log-spiral method) they both give KAh = cos2 . Even though they all give the same 

pressure, the at rest condition does not constitute a failure wedge. What it means is when  

 =   regardless of the wall movement, to create an active condition, the forces does not 

change from the at rest condition. This is obvious since the failure wedge angle is the 

angle of repose. Thus soil becomes a parallelogram mass sliding down on a ramp with an 

angle  with the horizontal while keeping the at rest pressure. 

When comparing with empirical formulas such as the Danish Code (Danish Goetechnical 

Institute 1978) recommended by The US Army Corps of Engineers [14] we find at 

o with β = -10o the proposed values are higher by 20% and lower by 3% at  

β = +10o and lower by 6.6% at β = +20o, see table 3.  
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                     β = -10o                      β = 10o                    β = 20o 

 (deg)

      

10 0.683 0.851 0.970 0.970     
15 0.612 0.761 0.870 0.878     
20 0.544 0.670 0.772 0.775 0.883 0.883 
25 0.477 0.581 0.678 0.670 0.775 0.748 
30 0.413 0.496 0.587 0.569 0.671 0.627 
35 0.352 0.417 0.500 0.474 0.572 0.518 
40 0.295 0.345 0.419 0.388 0.479 0.420 
45 0.242 0.279 0.344 0.311 0.393 0.333 

 

TABLE - 3 Comparison of K0r values with Empirical Formula. 

 

d - Resultant directional angle 

If the surface of a half space makes and angle  with the horizontal, then the resultant 

pressure on a vertical plane is parallel to the soil surface; these directions are conjugate. 

From this observation the resultant becomes E Er r 0 / cos  located at a line parallel to 

the surface or intersects the wall with an angle   from the horizontal. 

 

Static K0 for a non-yielding slanted wall with a ramp on top 

When extending the incipient shear method for a slanted wall one may find, while 

keeping the wall deflection at zero, an induced shear is required on the wall. Thus, when 

applying the incipient shear concept, T gets mixed up with the induced shear and they 

cannot be separated in the derivation. Furthermore, in order to keep the forces equal at 

the wall for a zero deflection, the mirror image of the wall is not sufficient to do the 

work. Consequently, a different  is necessary to use in the mirror image resulting in 

unsymmetrical shapes. Symmetry is an essential requirement to execute the incipient 

)sin1)(sin1(

 (Danish)0

 
rK

(derived)0rK
)sin1)(sin1(

 (Danish)0

 
rK

(derived)0rK
)sin1)(sin1(

 (Danish)0

 
rK (derived)0rK
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shear method. The incipient shear method  for a slanted wall can be used by forcing 

symmetry of gavity loads and in that case the gravity load is not pointing downwards. 

The derivation is involved and an alternative method will be used. 

 

Consider the slanted inward and outward walls in Fig. 3(a,b) respectively. In both cases 

they are assumed to be in the at rest condition. Thus, the deflection is zero at the wall and 

is assumed zero at any vertical line beyond the walls. Therefore, the solution can be 

obtained by using the solution in Eq. 6 or 18 for a vertical wall with a ramp on top. 

However, the solution must be separated into two cases: slanted inward and slanted 

outward. 

 

a - Static case > 0 for a wall slanted inward 

Consider the forces in Fig. 3(a), it is found that in order the forces to coincide at the 1/3 

point of the wall, there must exist a shear on line a-b with E Er r 0 ( ) / cos  . This is 

necessary in order to keep the summation of moments at the 1/3 point of the wall equal 

zero. This makes it consistent with the classical methods and  the observation made in 

paragraph (d) above. Thus, the pressure diagram will remain in a triangular distribution. 

From the geometry in Fig 3(a) it yields 
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W
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'


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FIG. 3(a) Wall Slanted Inward        FIG. 3(b) Wall slanted outward 

 

W h 
1

2
12   tan ( tan tan )  ................................................................................... (21) 

 

and 

E h Kr r0
2 2

0

1

2
1( ) ( tan tan ) ( )       ...................................................................... (22) 

 

where K r0 ( )  is the same as K0r in Eq. 6 or 18. It is shown as a function of  to  simplify 

substituting for   different variables. From the force diagram the resultant becomes: 

   E E W Es r r  0

2

0

2
( ) tan ( )    ..................................................................... (23) 

 

and 
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 
 tan

cos tan ( ) sin ( )

sin tan ( ) cos ( )


    
    


 

 

W E E

W E E
r r

r r

  

  
0 0

0 0

 

 

       
  

 
tan (tan tan )( tan tan ) ( )

tan ( tan tan ) ( )

     
   

1

1
0

2 2
0

K

K
r

r

 ...................................................... (24) 

 

where  is the directional angle to a line perpendicular to the wall. The horizontal force 

can be obtained as 

 

E E h Ks s r0
2 2

0

1

2
1   cos( ) ( tan tan ) ( )       ................................................... (25) 

 

Thus, the at rest horizontal coefficient for a wall slanted inward with a ramp on top 

becomes 

 

K Ks r0
2

01 ( tan tan ) ( )    ..................................................................................... (26) 

 

 

b - Static case < 0 for a wall slanted outward 

Consider the forces in Fig. 3(b), if the resultant force, that is coming beyond line c-b, is 

causing a vertical component, E r0 ( ) tan  , and a moment then the force Q on line e-c 

will adjust its magnitude and location to balance the forces and the moments. Thus the at 

rest resultant force, Es  , on the wall will line up with the horizontal component of the 

resultant on line c-b and no vertical force gets to be on the wall. In other words the 
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vertical component on line c-b gets dissipated in the soil and none is transferred to the 

wall. Now, the friction, Q W E rtan ( ( ) tan ) tan      0  , under the wedge edc is not 

fully mobilized since the at rest condition is considered and   becomes the immobile 

internal angle of friction. In fact at =0 tan   = 0, since the strain is considered zero at 

point c. On the other hand, at     / 2  it gives E E Qs r0 0 0   tan . This is true 

since  became the angle of repose for a sliding mass on a slope. It is reasonable to 

assume the immobile coefficient of friction is linearly proportional to the base length for 

a unit height, or linearly proportional to the weight of the wedge edc. So, tan   varies 

linearly with tan . This can be realized since the change in strain on line e-c will vary 

with the weight. Thus, from the two known points: at tan=0 tan  =0, at 

tan tan( / )    2  E E W Es r r0 0 0 0    ( tan ) tan   , with W h ( / ) tan1 2 2  , and 

E h Kr r0
2

01 2 ( / ) ( )  it yields the equation 

 tan ( ) tan tan ( ) tan cot         K Kr r0 0 . Substituting back in E s0  yields 

 

E E h K
K

Ks s r
r

r
0

2
0

0

0

1

2
1  










 

  
  

 ( )
( ) tan tan

( ) tan cot
tan tan  ......................................... (27) 

 

Thus, the at rest horizontal coefficient for a wall slanted outward with a ramp on top 

becomes 

 

K K
K

Ks r
r

r
0 0

0

0

1 









( )

( ) tan tan

( ) tan cot
tan tan

  
  

   ........................................................ (28) 
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The directional angle of the resultant Es relative to a line perpendicular to the wall is  , 

and  is less than zero, coinciding with the horizontal component E0s. Note: not all values 

of  makes   . However, the inequality is true for a very wide range approximately 

  0 4.     using     / 2  as the maximum value. 

 

c - Pressure diagram 

Since the forces coincide at the 1/3 point of the wall in Fig 3(a,b), the pressure can be 

assumed practically universal at full scale. Thus, the pressure diagram is defined by the at 

rest coefficient acting in a triangular pressure distribution with the center of pressure at 

0.33h. 

 

Effect of overconsolidation of sand 

Sherif et al. (1984) [10] obtained experimentally the additive term to K0 due to 

overconsolidation. Their experiment was done on a vertical wall with a flat surface on top 

and the resulting additive term to K0 is:   55 1. / D L   , where D is the dense unit 

weight at rebound or actual and  L is the loose unit weight of soil. Chouery [2] confirmed 

theoretically the findings. He adjusted the overconsolidation factor to 5.87 instead of 5.5 . 

This was necessary to account for the real K0 derivation and using L instead of D in 

calculating the at rest force and the stress. In general, locked-in stresses can only endure 

in the horizontal direction.  Thus, in the case of a slanted wall with a ramp on top the 

additive term is added to the horizontal at rest coefficient. Consequently, K0r() in Eq. 22, 

24, 25, 26, 27, and 28, is to be replaced by K0r,oc() where 
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K Kr oc r
D

L
0 0 587 1, ( ) ( ) . 




  








  ............................................................................... (29) 

 

Additionally,  in Eq. 21, 22, 25, and 27, is to be replace by L, and replace   by Lwhere 

it is based on the loosest state. 

 

At rest coefficient under earthquake  

In the earthquake resistant design of retaining walls, the earth pressure caused by an 

active condition against the wall is calculated by Mononobe-Okabe (1929 & 1924)[6,7] 

equation. Ichihara, and Matsuzawa (1973)[4] and Sherif et al. (1982)[11] showed that the 

Mononobe-Okabe equation is adequate with the angle of friction is fully mobilized for 

the maximum inertia force. Additional, the angle of wall friction    ( / ) max1 2   or  . 

However, the wall is assumed to move sufficiently before excitation to develop the 

corresponding active triangular distribution pressure. Much research and experiments has 

been done in that area confirming Mononobe-Okabe's equation. For a non-yielding wall, 

the friction has minimal effect on the forces since the relative deflection between the wall 

and soil is considered zero. This is expected since the wall and the soil moves together in 

an earthquake. When following Mononobe-Okabe's derivation:    tan / ( )1 1k kh v  

where kh and kv are the horizontal and vertical acceleration coefficients. Then,   becomes 

    ( ) / cos , cos( ) / cos1 k h hv    becomes  , and the earthquake parameters are as 

follows:  

 

a - Dynamic case + > 0 for a wall slanted inward 
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The maximum and minimum forces and coefficients can be obtained from: 

E h k KsE v sE0
2

0

1

2
1  ( )  ............................................................................................. (30) 

 K KsE r0

2

2

2

01


   
cos ( )

cos cos
tan( ) tan( ) ( )

 
 

       ........................................... (31) 

 

V h k KsE v sEv0
2

0

1

2
1  ( )  ............................................................................................. (32) 

 

    K KsEv r0

2
2

01 1


         
cos ( )

cos cos
tan( ) tan( ) tan( ) tan( ) tan( ) tan( ) ( )

 
 

               

                                                               .................................................................... (33) 

 

E E VsE sE sE ( ) ( )0
2

0
2  ............................................................................................ (34) 

 

tan
cos sin

sin cos


 
 E

sE sE

sE sE

V E

V E





0 0

0 0

 .................................................................................... (35) 

 

where E0sE is the horizontal earthquake force on the wall, K0sE is the horizontal 

coefficient of seismic earth pressure at rest, V0sE is the vertical earthquake force on the 

wall, K0sEv is the vertical coefficient of seismic earth pressure at rest, EsE is the resultant 

earthquake force on the wall, and E is the directional angle of the resultant relative to a 

line perpendicular to the wall at initial state. 

 

b - Dynamic case +  0 for a wall slanted outward 
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The maximum and minimum forces and coefficients can be obtained from: 

E E h k KsE sE v sE0
2

0

1

2
1   ( )  ................................................................................. (36) 

K K
K

KsE r
r

r
0 0

0

0

2

21  
   
  






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
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( ) tan( ) tan( )

( ) tan( ) cot
tan tan( )

cos ( )

cos cos
 

     
    

  
 
 

  

                                                             ...................................................................... (37) 

 

 

c - Dynamic case + || > 0 and  || < 0 

This condition normally happens for a vertical wall with  = 0 with |. In any case the 

solution for maximum forces can be found from case (a) above for + || > 0, and for 

minimum forces it can be found from case (b) above for  || < 0. 

 

d - Location of the line of action of the resultant earthquake force 

 Seed and Whitman (1970)[9] proposed a simple procedure to determine the location of 

the line of action of the resultant in an active condition. This procedure can also be 

adapted for a non-yielding wall. Ichihara, and Matsuzawa (1973)[4] gave an empirical 

expression for the location of the resultant for a vertical wall with flat surface on top. 

Their result shows the location varies from 1/3 to 0.38h depending on  where 

0 057 tan . . Sherif et al. (1982)[11] showed the location to be at 0.4h for the 

maximum resultant and 0.52h for the maximum incremental dynamic neutral earth thrust. 

Because the resultant location will vary depending on the amount of wall movement and 

the way in which the movement occurs, it is not simple to derive a theoretical expression. 

It seems that the empirical methods are preferred. However, since the location of the 
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resultant is taken relative to the initial state, then it can be taken as 

 1 0 67 . cos( ) / cos   h . This expression is derived from projecting a line horizontally 

from the 1/3-point at  inward inclination of the wall to the vertical line. For  = 0 it 

gives  1 0 67 . cos h or 0.42 at tan .  057. This Equation is slightly higher than 

Ichihara and Matsuzawa's curve but accurate with Sherif et al. at tan .  0 5. Based on 

this recommendation the incremental dynamic neutral thrust must adjust correspondingly. 

 

Comparison with experiments 

Ichihara, and Matsuzawa (1973)[4] showed, for a vertical wall with a flat surface on top, 

the horizontal maximum earth force at rest can be calculated by the empirical equation 

E h K K KsE AE A0 0

2
0

1

2

1

2 


 
  







( )  ........................................................................ (38) 

 

where KAE is the coefficient of horizontal active pressure during an earthquake 

(Mononobe-Okabe' equation), KA is the active horizontal coefficient at static (Coulomb's 

equation) and both KAE and KA is calculated at = (1/2), and K0 is 1-sin . The friction 

angle of soil used in the experiment was  = 42 degrees   = 1.59 gm/cm3 for Toyoura 

Sand. The measured K0 is much higher than 1-sin due to overconsolidation by shaking. 

Note: Their definition of Eq. 38 is the resultant earth pressure at the maximum inertia 

force related to K0max  as described by their Fig. 19. However, Eq. 3 of their paper defines 

K as the horizontal coefficient as it is used in their Fig. 13 and 14. Consequently, This 

interprets Eq. 38 to be the horizontal force at rest instead of the resultant. Therefore, Eq. 

38 is to be compared with Eq. 30 against different  values. Fig. 4 shows the difference 
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between the normalized horizontal [normalized to (1/2)h2 ] in Eq. 30 minus Eq. 38 for  

= 30 and 42 degrees verses kh with kv = 0. 

 

The result shows, in the tested range 0 < kh < 0.38,  that Eq. 30 fits the empirical Eq. 38 at 

 = 42 degrees better than at  = 30 degrees. This is expected since Eq. 38 was derived 

for  = 42 degrees showing -1% to 3.3% variations in magnitude. However, it seems that 

Ichihara, and Matsuzawa's empirical Eq. 38 is not applicable since it underestimates the 

horizontal force by 0 to 17.2% in magnitude in the full range of kh. The reason in the 

discrepancy is maybe the empirical Eq. 38 was obtained for a soil that was under 

consolidation. Sherif et al. (1982)[11] described the difference in their experiment is due 

to overconsolidation by shaking. It is found not possible to compare to the actual 

experiment of Ichihara, and Matsuzawa and include overconsolidation, since the 

available data are not sufficient to determine   L D L  and  / . 

 

When comparing with Sherif et al. (1982)[11] it is necessary to consider 

overconsolidation. Rewriting Eq. 29 for the case + > 0, the horizontal earthquake 

force becomes: 

 E h k K h ksE oc L v sE L v
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                                               .................................................................................... (39) 

where K0sE is from Eq. 31, and replace   by Lwhere it is based on the loosest state. The 

horizontal seismic at rest coefficient for overconsolidation becomes: 

 K KsE oc sE
D

L
0 0

2

2

2
1 87 1,

cos ( )

cos cos
tan( ) tan( ) (5. ) 


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 
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 .......................... (40) 
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FIG. 4 Difference between empirical and derived equations 

           for a vertical wall with a flat surface on top. 

For the case + > 0, the term  587 1. / D L   is additive to the term in the bracket in  

Eq. 37. 

 

Sherif et al. (1982)[11] results was based on  kv = 0, an average soil weight of ave  = 1.66 

gm/cm3 for Ottawa Silica Sand, and average internal soil friction of ave  = 40.9 degrees. 

In order to compare, it is necessary to find Lfor the loosest state. From their chart, at kh 

= 0  

K0,oc= 0.49 = K0(L) +  587 1. / D L  . Substituting D = ave  = 1.66 gm/cm3 , and L 

from Sherif et al. (1984)[10]:  L L  0 0117 32 1549. ( ) .  gm/cm3  in K0,oc and calculate 
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L numerically yields L = 38.92 degrees and L = 1.63 gm/cm3 . Substituting, 0, 

 degrees, and the term  587 1. / D L   = 0.109 [i.e. (K0,oc - K0) = 0.49 - 0.381] 

in Eq. 40, and comparing the results for different kh values yields the curves in Fig. 5.  

 

Fig. 5 shows the derived is in good results with experiment. The doted curve is from 

Sherif et al. (1982)[11] and is based on best-fit curve to all test data, and was drawn 

based on the average density of all test soils. The solid curve is the derived from Eq. 40 

and showing slightly lower values for K0sE, oc than the best-fit curve. The maximum 

percent variation between experiment minus derived divided by derived, calculates to be 

3.7%. For all practical purpose, this is considered a mach. 

 

For the minimum horizontal seismic at rest coefficient for overconsolidation, the 

theoretical equations gives lower values than Sherif's et al. (1982)[11] best-fit curve from 

experiment (27% lower at maximum point). Selectively, it is shown on Fig. 5 for 
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FIG. 5 Horizontal seismic at rest coefficient for overconsolidation 

for a vertical wall with a flat surface on top 

 

comparison. Similarly, when using Mononobe-Okabe's equation, the minimum horizontal 

thrust does not match experiments. It seems the minimum dynamic thrust does not match 

experiment possibly due to not taking into consideration the inertia effect of the wall. 

Also, possible impact forces will occur on the down swing of the acceleration, due to 

difference in mass between soil wedge and wall. This will cause an increase in the 

minimum pressure. Therefore, for the minimum horizontal seismic coefficient, the 

experiments will not match the theoretical equations. In any case, the minimum 

horizontal seismic coefficient is rarely needed in practice. 
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Design of a non-yielding retaining wall based on tolerable lateral displacement 

It has been shown by several investigators that even under mild earthquake conditions, 

there is some lateral displacement of retaining wall. For a non-yielding wall these 

displacements may not effect the at rest pressure itself. If sufficient movement occurs, the 

pressure becomes an active condition. This off course not acceptable since the design 

intent was to have an approximate non-yielding wall. Richards and Elms (1979)[8] 

proposed a procedure for designing gravity retaining walls for earthquake conditions, 

which allows limited lateral displacement of the walls. This procedure takes into 

consideration the inertia effect of the wall. In their analysis the active condition was 

considered based on Mononobe-Okabe's equation. To repeat the analysis for the at rest 

condition, it is found few modifications are necessary: 
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where Ww is the self-weight of the retaining wall, CIE is the wall inertia factor, b is the 

friction angle between bottom of the wall and the soil on which it is resting, E  and EsE is 

from Eq. 35 and 34 for +  0,  and EsE is from Eq. 36 for +  0. 
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Conclusion 

Based on classical methods, a theoretical solution is derived for static and dynamic 

pressures in sand for a slanted non-yielding wall with a ramp on top, including 

overconsolidations. Additional, design of a non-yielding retaining wall based on tolerable 

lateral displacement is addressed. The solution was based on classical methods and only 

practical assumptions were made. In dynamics, the results were successfully compared 

with experiments. These experiments were done on small-scale models in the laboratory 

for a vertical wall with a flat surface on top. The results match experiments very closely 

but the empirical equation by Ichihara and Matsuzawa (1973)[4] is shown inappropriate. 

It can underestimate the horizontal at rest force by 17.2%. The solution is consistent, 

tractable, and offers a wide variety of application in practice. 

 

Acknowledgments 

The writer is deeply appreciative to his wife Bernice J.F. Chouery for the love and 

patience in giving valuable family support to do this manuscript. Also, he is thankful to 

the assistance provided by Shirley A. Egerdahl in proofreading this manuscript. 

 

 

Appendix I.-References 

 

1. Bishop, A. W. (1955). "The Use of Slip Circle in the Stability Analysis of Slopes," 

Géotechnique, London, England, Vol. 5, No. 1, pp. 7-18. 



 30 

2. Chouery, Farid A. “Variational Method in Deriving K0” a companion paper 

www.facsystems.com/prod01.htm  

3. Coulomb, Charles Augustin (1776). "Essai sur une application des règles de maximis et 

minimis à quelques problèmes de statique relatifs à l'architecture," Mem. Div. Savants, 

Acad. Sci., Paris, Vol. 7.  

4. Ichihara, M., and Matsuzawa, H. (1973). "Earth Pressure during Earthquake," Soils and 

Foundations, Japanese Society of soil Mechanics and Foundation Engineering, Vol. 13, 

No. 4. 

5. Matsuo, H., and Ohara, S. (1960). "Lateral Earth Pressures and Stability of Quay Walls 

during Earthquakes," Proceedings of the Second World Conference on Earthquake 

Engineering, Japan, Vol. 1, pp. 165-181 

6. Mononobe, N. (1929). "Earthquake-Proof Construction of Masonary Dams," 

Proceedings of the world Engineering Conference, Vol. 9, p. 275. 

7. Okabe, S. (1924). "General Theory of Earth Pressure," Journal of Japanese Society of 

Civil Engineers, Tokyo, Japan, Vol. 12, No. 1. 

8. Richards, R., and Elms, D. G. (1979). "Seismic Behavior of Gravity Retaining Walls," 

Journal of the Geotechnical Engineering Division, ASCE, Vol. 105, No. GT4, pp. 449-

464. 

9. Seed, H. B., and Whitman, R. V. (1970). "Design of Earth Retaining Structures for 

Dynamic Loads," Proceedings, Specialty Conference on Lateral Stresses in the Ground 

and Design of Earth Retaining Structures, ASCE, 103-147. 

10. Sherif, M. A., Fang, Y. S., and Sherif, R. I. (1984). "Ka and K0 Behind Rotating and 

Non-Yielding Walls," J. of Geotech. Engrg., ASCE, (110)1, pp. 41-56. 



 31 

11. Sherif, M. A., Ishibashi, I., and Do Lee, Chong (1982). "Earth Pressures Against Rigid 

Retaining Walls," J. of Geotech. Engrg., ASCE, (108)5, pp. 679-695. 

12. Winterkorn, H. F., and Hsai-Yang, F. (1975). Foundation Engineering Hanbook, Van 

Nostrand Reinhold Co., New York, N. Y., Chapter 5, by Á. Kézdi, pp. 199 and 200 

13. Wood, J. H. (1973). "Earthquake-Induced Soil Pressures on Structures," Report No. 

EERL 73-05, Earthquake Engineering Research Laboratories, California Institute of 

Technology, Pasadena, Calif. 

14.  Engineering and Design – Retaining and Flood Walls – US Army Corps of Engineers 

Publication Number: EM 1110-2-2502, 29 September 1989, pp 3-11 

 

 

Appendix II.- Notation 

             The following symbols are used in this paper: 

 

 = angle of the failure wedge, or of failure a slice, with the horizontal; 

0 = slice wedge angle with the horizontal at start of first slip surface at x = 0; 

m = slice wedge angle with the horizontal at end of second slip surface; 

 = ramp angle or the slope of the top surface of the wall relative to the x-axis; 

 = Coulomb friction, directional frictional angle between dEx and dEy, also it is 

the  

   used as the directional angle for the resultant on a slanted wall, or on a 

   vertical wall, relative to a line perpendicular to the wall; 

0 = directional angle at first slice boundary at x = 0 = incipient shear angle; 
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m = directional angle at last slice boundary at x = xm = incipient shear angle; 

n = directional angle at slice boundary at x = xn; 

E = directional angle for the seismic resultant relative to a line perpendicular to the  

   slanted wall; 

CIE  = the wall inertia factor; 

E0r = at rest horizontal force for a vertical wall with a ramp on top; 

E0s = at rest horizontal force for a slanted wall with a ramp on top; 

E0sE = at rest horizontal seismic force for a slanted wall with a ramp on top; 

E0sE,oc = at rest horizontal seismic force for consolidation for a slanted wall with a ramp  

   on top; 

Emr = horizontal force of last slice boundary at x = xm; 

Enr = horizontal force of slice boundary at x = xn;  

Er = E0r()/tan; 

Es = at rest resultant force for a slanted wall with a ramp on top; 

ErE = at rest resultant seismic force for a slanted wall with a ramp on top; 

dEx = slice horizontal resultant force; 

dEy = slice vertical resultant force; 

 = angle of internal friction of soil; 

  = immobile angle of internal friction of soil; 

b = friction angle between bottom of the wall and the soil on which it is resting; 

L = angle of internal friction of soil at loosest state or initial state; 

 = soil unit weight; 
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D = unit weight of soil at dense state, or actual state,  or at rebound state; 

L = unit weight of soil at loosest state or initial state; 

h = height of wall; 

kh = horizontal acceleration coefficient; 

kv = vertical acceleration coefficient; 

K = coefficient of horizontal earth pressure; 

K0 = coefficient horizontal earth pressure at rest for a vertical wall with a flat 

surface  

   on top; 

K0,oc = coefficient of horizontal earth pressure at rest for overconsolidation for a  

   vertical wall with a flat surface on top; 

K0max = coefficient of seismic horizontal earth pressure at rest for maximum inertia  

   force;  

K0r = coefficient horizontal earth pressure at rest for a vertical wall with a ramp on  

   top; 

K0r() = same as K0r but used as a function of ; 

K0r,oc = coefficient horizontal earth pressure at rest for overconsolidation for a vertical  

   wall with a ramp on top; 

K0s = coefficient of horizontal earth pressure at rest for a slanted wall with a ramp 

on  

   top; 

K0sE = coefficient of seismic horizontal earth pressure at rest for a slanted wall with 

   a ramp on top; 
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K0sEv = coefficient of seismic vertical earth pressure at rest for a slanted wall with 

   a ramp on top; 

K0sE,oc = coefficient of seismic horizontal earth pressure at rest for overconsolidation 

for  

   a slanted wall with a ramp on top; 

KA = coefficient of active earth pressure; 

KAh = coefficient of horizontal active earth pressure; 

KAE = coefficient of seismic earth pressure in active condition; 

Q = reactive force on bottom of wedge to maintain equilibrium; 

dQ = reactive force on bottom of failure wedge or slice to maintain equilibrium; 

 =  tan / ( ) 1 1k kh v ; 

T = incipient shear vertical force at x = 0; 

Tm = vertical force of last slice boundary at x = xm; 

Tn = vertical force of slice boundary at x = xn;  

u = y x tan ; 

du = dy dx tan ; 

u  = du/dx =  y tan ; 

u0 = y0; 

um = y xm m tan ; 

un = y xn n tan ; 

V0sE = at rest vertical seismic force for a slanted wall with a ramp on top; 

W = vertical force from weight of wedge; 

dW = weight of slice; 
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Ww  = the self-weight of the retaining wall; 

 = slant angle or the slope of the wall relative to a vertical line or the y-axis. 

x = coordinate x-axis; 

dx = width of slice's wedge or the change in x; 

xm = distance to tip of the second slip surface; 

xn = distance to tip of the first slip surface or the start of the second slip surface; 

y = coordinate height at y-axis; 

dy = the change in y; 

dy  = height of slice's wedge; 

y  = dy/dx; 

y0 = height of wall or start of first slip surface at x = 0; 

ym = height distance at end of second slip surface; and 

yn = height distance at end of first slip surface or start of second slip surface; 

 


