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Introduction: 

In finding the roots of the fifth order polynomial, we find the available iterative algorithm do not 

give a guarantee of finding the roots. For example, Newton’s or Halley’s iteration formula runs into 

difficulties when f (x) and f’(x) or f’(x) and f”(x) are simultaneously near zero. This problem 

happens not only when the root makes f (x), f’(x) and f”(x) zero but what if during the iteration 

process one of the values xn also gives f’(xn) =0 in Newton’s iteration or both f’(xn) = f”(xn) =0 in 

Halley’s. This condition throws the improved xn+1 into infinity. Thus fishing around xn for a new 

xn+1 is required with no guaranties, causing additional iterations that still may stumble to a new 

values xn that gives f’(xn) =0 in Newton’s iteration or both f’(xn) = f”(xn) =0 in Halley’s. Similarly, 

this problem also happens in Lageree’s Method.  We also note in the convergence algorithm of Lin-

Baistow if the coefficient in the denominator is zero it throws the improved xn+1 into infinity. Again 

they all do not give a guaranteed algorithm of convergence. Another problem is the initial value x0 it 

is at the programmer own risk it may cause divergence. This value has to be suitable to cause 

convergence. So how do we pick the initial value? 

 

We seek a guaranteed algorithm for the fifth order polynomial that has a prescribed initial value x0. 

This new algorithm is at least of fourth order convergence and most of the time is of fifth order 

convergence. So it is expected to converge most of the time in five iterations depending on the 

polynomial coefficients. 

 

Setting up the solution:  
We know with higher order Taylor expansion it will represents a better approximation of the 

function f (x) than Newton or Halley’s method. Newton follows the slope of a line to find xn+1 

value. We will follow a 4
th
 order polynomial curve instead and is obtained from Taylor expansion, 

thus: 
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Which will give 5
th
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Thus Eq. 1 lacks one more term to bring us back to the original 5
th
 order polynomial of Eq. 2 where: 
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0)( 235 =++++= dcxbxaxxxf  ……………………………………………………………. (3) 

Assuming we are trying to find the roots of the equation: 

02345 =+++++ tsyryqypyy  ……………………………………………………………. (4) 

and we have substituted 5/pxy −=  to give: 
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the coefficients in Eq. 3. We do not need to prove that Eq. 1 is an approximation to Eq. 2 or Eq. 3. It 

is generally understood that if we follow the polynomial curve of Eq. 1 it would give a closer value 

to the actual root; more closer than Newton iteration because for any xn it is a better approximation 

of the function than Newton’s approximation (see Figure 1). These practical assumptions can be 

fairly accepted by most mathematicians. All would agree that Taylor series with missing term or 

two gives a closer approximation of any function f (x) provided that Taylor Series Remainder term 

is small enough and so the root xn+1 must be close to the root and no proof is needed (if this is still a 

question then just compare values with various approximated function). When solving the Quartic 

equation of Eq. 1, in the iteration we pick the closest root of Eq. 1, x
*
 = (x – xn), that is closest to 

zero so f (xn) = 0 in Eq. 1 and the final xn becomes a root of f (x). 

We start our algorithm by first checking if 0)()4( ≠xf at any root of f (x) otherwise we will run into 

problems in finding the roots of Eq.1 when dividing by )()4(

nxf  provided xn is in the neighborhood 

of x
*
. 02345)()4( =⋅⋅⋅= xxf at x = 0. This mean we can never have an xn = 0. The only way this 

can happens is when d = 0. Thus, the first check is finding out if d = 0, if so the root is x = 0 and we 

find the remainder of the roots by dividing Eq. 3 by x and proceed to find the root of the Quartic 

equation. If d  is very close to zero but not zero and the selected initial value, or some other reason it 

causes 0)()4( =ixf then treat Eq. 1 to a lower order polynomial for only that value to find  

x – xi using the equation bellow 
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If f 
‘”
(xi) is also zero for the same value then treat Eq. 4A to a lower order polynomial for only that 

value to find x – xi  using the equation bellow 
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If f 
”
(xi) is also zero for the same value then treat Eq. 4B to a lower order polynomial for only that 

value to find x – xi  using the equation bellow 

))(()()( iii xxxfxfxf −′+= …………………………………………………………….. 4C 

f‘(xi)  is also zero then use Eq. 2 for a better approximation we replace xn by xi  and solve for x. 

[ ]5
1

1

* )( iii xfxxx −== + ………………….………………………………………………… 4D 

Obviously if is f (xi) is also zero then x = xi is the root. This guarantees
2
 conversion for the selected 

initial value specified in the next section. 

Another assumption we have is that the Taylor 4
th
 order polynomial, Eq. 1, has a real root and can 

never give imaginary roots. This assumption can be contradicted when )(xf ′ has no roots or all the 

roots of )(xf ′ gives 0)( >xf . To show the assumption that when )(xf ′ has no roots the Taylor 4
th
 

order polynomial Eq.1 has imaginary roots. Divide Eq. 1 by 4)( nxx − and let )/(1 nxxu −= yields: 
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Similarly divide Eq. 2 5)( nxx −  yields: 
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If we multiply Eq. 5 by u we find the Eq. 5 and Eq.6 are identical functions except Eq. 6 is 

translated in the y-axis by 1. If 0)( ≠′ xf or )(xf ′ has no real root then Eq. 2 has one real root, so is 

Eq. 6 it would have one real root. Thus, Eq. 5 when multiplied by u to become uh(u) would have 

one real root. This was done to match Eq. 6 and it would only be translated by 1. Since, uh(u) =0 

has one real root namely u=0 then uh(u) would have no other real root. Thus, h(u) has no real roots 

or Eq.1 has no real roots and they are all imaginary. All this because )(xf ′ has no real root. This 
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problem can also happen if f (x) has only one root. A sufficient test is to determine if 
5

0 )()()( xxxfxk −−=  has a real root, where x0 is an appropriate initial value used in Eq. 1 

y

x

Newton

Taylor Eq. 1 a 4th order 
root x*

f(x) Eq. 3 polynomial f(x)-(x-xn)^5

xnxn+1

Curve if Eq. 1 has

no real roots

 

FIGURE 1 

and k(x) matches Eq. 1 (this can be derived by using Eq. 2 for f (x) and subtracting 5)( nxx −  to 

become Eq. 1). If so then all of 5)()( nxxxf −−  has at least one real roots  This can be easily seen 

graphically as in figure 2 when translating the same function x
5
 by xn then subtracting from  

f (x). We saying if (x – x0)
5
 intersect once then if it is shifted it will intersect at least once more. 

(Note: )()( nn xkxf ′=′ ). Thus we can construct the curve in Figure 1. Another preferred alternative 

than doing the test for the 5
th
 order polynomials is to go ahead and find the roots of 

)(xf ′ and )(xf ′′ , (Note: we need to do that anyway in finding the initial condition described in 

forgoing section) and see if )(xf ′  roots are imaginary.  If the test
3
 or the roots )(xf ′  shows at least 

                                                 
3 Note: this test is useful because for example if f (x) is an odd function and has a root and is a higher order polynomial or even if it is 

not a polynomial that has been approximated by a Taylor polynomial (For example if f (x) = f (0) + f ’(0) x / 1! + f “(0) x2 / 2! + f “’(0) 

x3 / 3! + ……+ f (n)(0) xn / n!, where n is odd and  f (n)(0) is approximated numerically with high accuracy with an acceptable 

remainder. In this case f ’(xn),  f “(xn),  f ‘’’(xn),  f
  (4)(xn), …  does not need to be approximated with high accuracy similar to the 

Secant Method with more initial values).  So the test becomes: 
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If k(x) has a real root using the appropriate initial value x0 then all of k(x) has a real root when replacing x0 by xn and tells us the 

Quartic Eq. 1 has no imaginary roots for all xn This can be concluded since we are subtracting from f (x) a translated function by xn.  

In the case of an even function f (x) it is safer to use Eq.7.  

If the initial condition in all cases are guest at instead without using the above guaranteed conversions for finding the roots of  f’(x) 

then guessing the initial value is permitted and legally and can be defended in a court of law, in the case of an uneducated person in 

the jury questions the engineer’s result for guessing a number. The reason is it can be permitted because it can be verified without 

guessing with our guaranteed conversions of roots and compared with other roots - please see commentary in the end of the paper. 
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one real root then Eq.1 will always have at least one real root. If the selected test 5

0 )()( xxxf −−  

has no real root without checking )(xf ′  then it is 

 
 best to avoid this situation and use a cubic Taylor approximation instead of using Eq.1 or we use 

the following equation: 
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Where, the order of convergence drops to 4
th
 order and in the iteration we pick the closest root 

(x – xn) to zero in the cubic equation.. In this case we start our algorithm by first checking if 

0)( ≠′′′ xf at any root of f (x) where xn is in the neighborhood of x otherwise we will run into 

problems in finding the roots of Eq.7 when dividing by )( nxf ′′′ . 

0345)( 2 =+⋅⋅⋅=′′′ axxf at ax −±= . If 0>a there is no need to worry )( nxf ′′′ could never be 

(x - xn)
5 

y 

x 

 f (x) 

Typical 

root 
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zero, other wise check and see if 0)( =−± af , if true the root is found and we proceed using 

synthetic division to find the remainder roots of the Quartic equation. If the root is very close to 

a−±  but not that value and the selected initial value or for some other reason 

causes 0)( =′′′
ixf then treat Eq. 1 to a lower order polynomial for only that value to find x – xi  by 

using Eq. 4B. If f 
”
(xi) is also zero use Eq. 4C. If f‘(xi) is also zero then use Eq. 2 for a better 

approximation without the forth order term by replacing xn by xi  and solve for x. 

[ ]5
1

1 )( iii xfxxx −== + ………………………………………………………………………… (8) 

Obviously if  f (xi) is also zero then x = xi is the root. This guarantees conversion for the selected 

initial value specified in the next section. 

Finding the initial value x0: 

After making the above check, we proceed by finding the roots of 0)( =′ xf and find the zero 

slopes. Second we find the roots of 0)( =′′ xf , for the inflection points. These roots can be easily 

found using the Quartic and Cubic polynomial solutions. Let x’min and x’max be the most negative 

and the most positive root of )(xf ′ if any and let x”min and x”max be the most negative and the most 

positive root of )(xf ′′ if any. By inspection if f (x’min) >0 then our root x
*
 < x’min and if  

f (x’max) <0 then our root x
*
 > x’max. Since we know the upper and lower bound (-M, M): 

[ ]),1max(),,,,max(1min dcbadcbaM ++++=       and       –M < x
*
 < M 

Then the initial value can be taken as  
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*
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xx
x

′+
=            if       f [min(x’min, x”min)] < 0 and f ( x’min) > 0  ,  x”min < x

*
 < x’min     

If x’min do not exist set x’min = x”min in finding x0 …………………………………………….. (9) 

or 
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=            if       f [max(x’max, x”max] > 0 and f ( x’max) < 0  ,  x”max > x

*
 > x’max 

If x’max do not exist set x’max = x”max in finding x0 …………………………………………. (10) 
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If none of the above is satisfied then use for next consecutive hump at xi ‘ and xi+1’ where f (xi’) > 0  

and f(xi+1’) < 0 with xi’< xj”< xi+1’ 
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This selected value of x0 will guarantee convergence. If there are other intermediate x’ and x” roots 

that maybe suitable and do not involve ±M the algorithm will pick the faster values if M is very 

large. The process can be easily done by sorting the combine data of xi’ and xi” and investigate 

 f (xi’) and f (xi”). The proof of conversions after selected initial conditions can be seen graphically 

using Newton’s iteration slope line for a lower curve approximation of Eq. 1 or Eq. 7. 

Real Roots of Higher Order Polynomials: 

If we go to the 6
th
 order polynomial, we find using the above 5

th
 order polynomial solution we can 

find the slopes and the inflection points. If there is one root for 0)'( =′ xf and 0)'( >xf then all the 

roots of f (x) are all imaginary, other wise we can proceed with Eq.7 to find the real roots. However, 

before iterating we need to make sure 0)( ≠′′′ xf when using Eq.7 this procedure for finding the new  

xi+1 is similar to the 5
th
 order procedure. Thus, the real roots of the 6

th
 order polynomial are 

guaranteed to be extracted. If we go to the 7
th
 order polynomial again using the solution of the 6

th
 

order we can extract the slopes and the inflection points. If there is no zero slopes found or all the 

roots of )(xf ′ are imaginary, then there is only one root. The solution is similar to the 5
th
 order 

polynomial and the real roots are guaranteed to be extracted. Finally, if we go to the 8
th
 order we 

find similarities to the 6
th
 order in knowing if they are all the roots are imaginary. With this we 

leave it to the reader to construct a guaranteed algorithm for higher order polynomial. It is realized 

that in order to write the algorithm of polynomial all the previous algorithm of lower order has to be 

programmed. It is a very nested challenging program for higher order polynomials and probably an 

expert programmer may be attracted to the problem. 

Commentary and Hints to Guarantee Imaginary Roots and multi-dimension functions: 

For the 5
th
 order polynomial that has imaginary roots substitute for x = u + iv in Eq. 3 where u and v 

are real numbers and v cannot be zero. When collecting the real and imaginary in Eq. 3 it forces 

finding the root (u
*
, v

*
) of the following two polynomial: 

( )
0)(235),(

05310),(

42224

432235

=++−+++=

=+++−++++=

vauvcbuauuvug

uvbauuvdcubuauuvuf
 ...……………..…………… (12) 

Since for any v we can guaranty a root u in both equations and since there is a u that makes both 

equations of Eq. 12 intersects (this can be seen because one equation is a 5
th
 order in u and the other 

is a 4
th
 order in u) then there is a solution u that satisfies both equations.  
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Now the initial value v0 can be selected by taking 0,0
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We see that u
v

g
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every for       and   
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. Also M± can be calculated from Eq. 12 
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                                                                         ……………………………………………… (14) 

If we use Eq. 13 and 14 as we done with Eq. 9 and 10 to select 2

0v  as a function of u and substitute 

in Eq. 12 and find a u0 using a guaranteed conversion algorithm for each equation (such as using the 

Author’s or Improved Newton’s for f ‘(x) = 0 problem or Halley’s for f ‘(x) = f “(x) = 0 problem). 

Now pick any u0 then the initial condition (u0, v0) for guaranteed root are found. Then we can use a 

two dimensional Newton’s algorithm with the Taylor series expansion to find the roots. We know 

now how to avoid the pit falls that was in one dimension Newton’s of f ‘(x) = 0 or Halley’s for f ‘(x) 

= f “(x) = 0 by using higher order terms in the series at that value. This procedure can be used for a 

two dimensional Newton’s algorithm. 

We can conclude from this example that for multi-dimension function we can derive a prescribed 

initial condition – it will take some work but we have a way to do it - that guarantees conversions 

using a Taylor series expansion algorithm for multi-dimension that avoids pit falls like as in f ‘(x) = 

f “(x) = 0 in one dimension then the solution avoided guessing for the initial condition and becomes 

a closed solution. 

With that said, guessing the initial value should be permitted and legally and can be defended in a 

court of law, in the event of an uneducated person in the jury questions the engineer’s, scientists 

etc., for his or her result for guessing a number. The reason it can be permitted because it can be 

verified without guessing with our guaranteed conversions of roots and compared with other roots. 

The reason this problem was addressed was the author has solved several fundamental unsolved 

problems in Structural and Mechanics for Large deflection of Beams, Beam Buckling and Plates 

that requires finding zeros for a multi-dimension functions. Because this problem is involves in 

many areas in engineering the guessing question had to be put rest for the benefits of all. 


